chứng minh tổng S=3+3^2+3^3+3^4+...+3^2012 chia hết cho 40
giúp mk nha m.n
mk cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,S=1+3+32+...+360
3S=3+32+33+...+361
3S-S=(3+32+33+...+361)-(1+3+32+...+360)
2S = 361 - 1
b,2S+1=361-1+1=361 = 3x-3
=>x-3=61=>x=64
c, S=1+3+32+...+360
=(1+3)+(32+33)+...+(359+360)
=4+32(1+3)+...+359(1+3)
=4+32.4+...+359.4
=4(1+32+...+359) chia hết cho 4
S=1+3+32+...+360
=(1+3+32)+....+(358+359+360)
=13+...+358(1+3+32)
=13+...+358.13
=13(1+...+358)
\(S=4+3^2+3^3+...+3^{223}=3^0+3^1+3^2+3^3+...+3^{223}\)
=> \(3S=3+3^2+3^3+3^4+...+3^{224}\)
=> \(3S-S=3^{224}-1\)
=> \(S=\frac{3^{224}-1}{2}=\frac{\left(3^8\right)^{28}-1}{2}\)là số tự nhiên
Ta có: \(\left(3^8\right)^{28}-1⋮\left(3^8-1\right)\)
mà \(3^8-1=6560=41.160⋮41\)
=> \(\left(3^8\right)^{28}-1⋮41;\left(41;2\right)=1\)
=> \(S=\frac{\left(3^8\right)^{28}-1}{2}\) chia hết cho 41.
\(S=\left(3+3^{3+3^3}\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\)
\(S=39.1+39.3^3+....+39.3^{96}=>S=39\left(1+3^3+3^6+.....+3^{96}\right)\)
Vậy S chia hết cho 39
A = (3+ 3^2 +3^3)+ (3^4 + 3^5+ 3^6)+(3^7+ 3^8 + 3^9)
= 39 + 3^3 (3+ 3^2+ 3^3) + 3^6(3+ 3^2+ 3^3)
= 39 + 3^3 .39 +3^6 .39
Vì 39 chia hết cho 13 nên A chia hết cho 13
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
vì một trong các thừa số có số chia hết cho 3 nên phép nhân đó chia hết cho 3
Gọi tổng đó là A:
A = 1 + 3 + 32 + 33 + ... + 399
A = ( 1 + 3 + 32 + 33 ) + ... + ( 396 + 397 + 398 + 399 )
A = 40 + ... + 396 · ( 1 + 3 + 32 + 33 )
A = 40 + ... + 396 · 40 \(⋮40\)
=> A \(⋮40\)
S=31+32+33+34+....+32012
=3x1+3x3+3x9+3x27 +......+32009x1+32009x3+32009x9 +32009x27
=3x(1+3+9+27)+35x(1+3+9+27)+....+32009x(1+3+9+27)
=3x40+35x40+....+32009x40
=>S\(⋮\)40
S = 3 + 32 + 33 + 34 +...+ 32012 ( có 2012 số hạng)
S = ( 3 + 32 + 33 + 34) + ...+ ( 32009 + 32010 + 32011 + 32012) ( có 503 nhóm số hạng)
S = 3.(1+3+32 + 33) + ...+ 32009.(1+3+32 +33)
S = 3.40 +...+ 32009.40
S = 40.(3+...+32009) chia hết cho 40