\(64^2.81^3.34:\left(2^{13}.3^9.17\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(64^2.81^3.34\div2^{13}.3^9.17\)
\(=\left(2^6\right)^2.\left(3^4\right)^3.2.17\div2^{13}.3^9.17\)
\(=2^{12}.3^{12}.2.17\div2^{13}.3^9.17\)
\(=\left(2^{12}.2\div2^{13}\right).\left(3^{12}.3^9\right).\left(17.17\right)\)
\(=1.3^{21}.17^2\)
\(=3^{21}.17^2\)
Bạn ơi nếu dấu chia kia là phân số thì làm theo cách dưới đây , còn không phải thì làm theo cách kia
\(\frac{64^2.81^3.34}{2^{13}.3^9.17}=\frac{\left(2^6\right)^2.\left(3^4\right)^3.2.17}{2^{13}.3^9.17}=\frac{2^{12}.3^{12}.2.17}{2^{13}.3^9.17}=\frac{2^{13}.3^{12}.17}{2^{13}.3^9.17}=3^3=27\)
\(\frac{\left(2^6\right)^2.\left(3^4\right)^3.34}{2^{13}.3^9.17}=\frac{2^{12}.3^{12}.2}{2^{13}.3^9}=3^3=27\)
\(=\dfrac{\left(2^3\right)^3.\left(3^2\right)^4-2^8.\left(3^4\right)^2}{\left(2^4\right)^2.\left(3^4\right)^2+\left(2^2\right)^4.\left(3^3\right)^3}=\dfrac{2^9.3^8-2^8.3^8}{2^8.3^8+2^8.3^9}=\)
\(=\dfrac{2^8.3^8.\left(2-1\right)}{2^8.3^8.\left(1+3\right)}=\dfrac{1}{4}\)
Ta có: \(\left(\frac{8}{1.9}+\frac{8}{9.17}+\frac{8}{17.25}+...+\frac{8}{49.57}\right)+2\left(x-1\right)=\frac{2x+7}{3}+\frac{5x-8}{4}\)
\(\Leftrightarrow1-\frac{1}{9}+\frac{1}{9}-\frac{1}{17}+\frac{1}{17}-\frac{1}{25}+....+\frac{1}{49}-\frac{1}{57}+2x-2=\frac{8x+28+15x-24}{12}\)
\(\Leftrightarrow1-\frac{1}{57}+2x-2=\frac{23x+4}{12}\)
\(\Leftrightarrow2x-\frac{58}{57}=\frac{23x+4}{12}\)
\(\Leftrightarrow24x-\frac{232}{19}=23x+4\)
\(\Leftrightarrow x=\frac{308}{19}\)
1. Tìm x, biết :
a. ( x - \(\frac{3}{4}\)) \(^2\)= 0
=> x - \(\frac{3}{4}\)= 0
=> x = 0 + \(\frac{3}{4}\)
=> x = \(\frac{3}{4}\)
b. ( x + \(\frac{1}{2}\)) \(^2\)= \(\frac{9}{64}\)
=> ( x + \(\frac{1}{2}\)) \(^2\)= ( \(\frac{3}{8}\)) \(^2\)
=> x + \(\frac{1}{2}\)= \(\frac{3}{8}\)
=> x = \(\frac{3}{8}\)- \(\frac{1}{2}\)
=> x = \(\frac{-1}{8}\)
c. \(\frac{\left(-2\right)^x}{16}=-8\)
=> \(\frac{\left(-2\right)^x}{16}=\frac{-8}{1}=\frac{-128}{16}\)
=> ( -2)\(^x\)= -128
=> ( -2 ) \(^x\)= ( -2) \(^7\)
=> x = 7
\(A=\dfrac{\left(-3\right)^{45}\cdot5^3\cdot2^{12}}{5^4\cdot3^{44}\cdot\left(-2\right)^{11}}=\dfrac{\left(-3\right)^{45}\cdot\left(-2\right)^{12}}{5\cdot\left(-3\right)^{44}\cdot\left(-2\right)^{11}}=\dfrac{\left(-3\right)\cdot\left(-2\right)}{5}=\dfrac{6}{5}\)
\(64^2.81^3.34:\left(2^{13}.3^9.17\right)=\frac{\left(2^6\right)^2.\left(3^4\right)^3.2.17}{2^{13}.3^9.17}=\frac{2^{12}.3^{12}.2.17}{2^{13}.3^9.17}=3^3=27\)