Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(9-\dfrac{13}{18}\right):\dfrac{325}{27}-\dfrac{17}{8}:\dfrac{51}{40}\)
\(=\dfrac{149}{18}\cdot\dfrac{27}{325}-\dfrac{17}{8}\cdot\dfrac{40}{51}\)
\(=\dfrac{447}{650}-\dfrac{5}{3}=-\dfrac{1909}{1950}\)
b: \(=\dfrac{48}{64}+\left(\dfrac{4}{5}-2-\dfrac{4}{15}\right):\dfrac{11}{3}\)
\(=\dfrac{3}{4}+\dfrac{-22}{15}\cdot\dfrac{3}{11}=\dfrac{3}{4}-\dfrac{2}{5}=\dfrac{15-8}{20}=\dfrac{7}{20}\)
\(\frac{64^2.81^3.34}{2^{13}.3^9.17}=\frac{2^{12}.3^{12}.2.17}{2^{13}.3^9.17}=\frac{2^{13}.3^{12}.17}{2^{13}.3^9.17}=3^3=27\)
Chúc bạn học tốt!
A/ \(\left(15-6\frac{13}{18}\right):11\frac{1}{27}-2\frac{1}{8}:1\frac{11}{40}\)
\(=\left(15-\frac{121}{18}\right):\frac{298}{27}-\frac{17}{8}:\frac{51}{40}\)
\(=\left(\frac{270}{18}-\frac{121}{18}\right):\frac{298}{27}-\frac{17}{8}:\frac{51}{40}\)
\(=\frac{149}{18}:\frac{298}{27}-\frac{17}{8}:\frac{51}{40}\)
\(=\frac{3}{4}-\frac{5}{3}\)
\(=\frac{9}{12}-\frac{20}{12}\)\(=-\frac{11}{12}\)
B/ \(\left(-3,2\right)\cdot-\frac{15}{64}+\left(0,8-2\frac{4}{15}\right):3\frac{2}{3}\)
\(=\left(-3,2\right)\cdot-\frac{15}{64}+\left(0,8-\frac{34}{15}\right):\frac{11}{3}\)
\(=-\frac{3,2}{1}\cdot-\frac{15}{64}+\left(0,8-\frac{34}{15}\right):\frac{11}{3}\)
\(=\frac{48}{64}+\left(0,8-\frac{34}{15}\right):\frac{11}{3}\)
\(=\frac{3}{4}+\left(\frac{12}{15}-\frac{34}{15}\right):\frac{11}{3}\)
\(=\frac{3}{4}+\left(-\frac{22}{15}\right):\frac{11}{3}\)
\(=\frac{3}{4}+\left(-\frac{2}{5}\right)\)
\(=\frac{15}{20}+\left(-\frac{8}{20}\right)\)
\(=\frac{7}{20}\)
\(\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)
\(=\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{8^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)
\(=\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...0...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)
\(=0\)
Vậy...
\(1\frac{13}{15}\cdot3\cdot(0,5)^2\cdot3+\left[\frac{8}{15}-1\frac{19}{60}:1\frac{23}{24}\right]\)
\(=\frac{28}{15}\cdot3\cdot0,5\cdot0,5\cdot3+\left[\frac{8}{15}-\frac{79}{60}:\frac{47}{24}\right]\)
\(=\frac{28}{5}\cdot0,25\cdot3+\left[\frac{32}{60}-\frac{79}{60}\cdot\frac{24}{47}\right]\)
\(=\frac{28}{5}\cdot\frac{25}{100}\cdot3+\left[\frac{32}{60}-\frac{158}{235}\right]\)
\(=\frac{28}{5}\cdot\frac{1}{4}\cdot3+\frac{-98}{705}=\frac{7}{5}\cdot1\cdot3+\frac{-98}{705}\)
Đến đây là tính dễ rồi :v
\((-3,2)\cdot\frac{-15}{64}+\left[0,8-2\frac{4}{15}\right]:1\frac{23}{24}\)
\(=\frac{-32}{10}\cdot\frac{-15}{64}+\left[\frac{8}{10}-\frac{34}{15}\right]:\frac{47}{24}\)
\(=\frac{-32\cdot(-15)}{10\cdot64}+\left[\frac{4}{5}-\frac{34}{15}\right]:\frac{47}{24}\)
\(=\frac{-1\cdot(-3)}{2\cdot2}+\frac{4\cdot3-34}{15}:\frac{47}{24}\)
\(=\frac{3}{4}+\frac{-22}{15}:\frac{47}{24}\)
\(=\frac{3}{4}+\frac{-517}{180}=\frac{-191}{90}\)
Bài 2 : \(\frac{2\cdot(-13)\cdot9\cdot10}{(-3)\cdot4\cdot(-5)\cdot26}=\frac{1\cdot(-1)\cdot3\cdot2}{(-1)\cdot2\cdot(-1)\cdot2}=\frac{1\cdot3}{-1\cdot2}=\frac{3}{-2}=\frac{-3}{2}\)
\(\frac{15\cdot8+15\cdot4}{12\cdot3}=\frac{15\cdot(8+4)}{12\cdot3}=\frac{15\cdot12}{12\cdot3}=\frac{15}{3}=5\)
a)\(\left( { - 35,1} \right).\left( { - 64} \right):13 \approx \left( { - 35} \right).\left( { - 64} \right):13 \approx 172\)
b)\(\left( { - 8,8} \right).\left( { - 4,1} \right):{\rm{ }}2,6 \approx ( - 9).( - 4):3 = 12\)
c) \(7,9.\left( { - 73} \right):\left( { - 23} \right) \approx 8.( - 73):( - 23) \approx 25\).
Cách 1:
a) \( - 2020 = 2.\left( { - 1010} \right)\) nên \(\left( { - 2020} \right):2 = - 1010\)
b) \(64 = \left( { - 8} \right).\left( { - 8} \right) \Rightarrow 64:\left( { - 8} \right) = - 8\)
c) \( - 90 = \left( { - 45} \right).2 \Rightarrow \left( { - 90} \right):\left( { - 45} \right) = 2\)
d) \( - 2121 = 3.\left( { - 707} \right) \Rightarrow \left( { - 2121} \right):3 = - 707\)
Cách 2:
a) \( - 2020 :2=-(2020:2)= - 1010\)
b) \(64:(-8)=-(64:8) = - 8\)
c) \( -90:(-45)=90:45= 2\)
d) \( - 2121 :3=-(2121:3)= - 707\)
\(64^2.81^3.34:\left(2^{13}.3^9.17\right)=\frac{\left(2^6\right)^2.\left(3^4\right)^3.2.17}{2^{13}.3^9.17}=\frac{2^{12}.3^{12}.2.17}{2^{13}.3^9.17}=3^3=27\)