Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(B=\dfrac{\left(-12\right)^5.27^4-32^2.81^4}{729^4:\left(-9\right)^4.16^5:\left(-8\right)^3}=\dfrac{\left(-3\right)^5.2^{10}.3^{12}-2^{10}.3^{16}}{3^{24}:3^8.2^{20}:\left(-2\right)^9}\\ =\dfrac{2^{10}.3^{16}.\left[-3-1\right]}{\left(-2\right)^{11}.3^{16}}=2\)
Vậy B = 2
Câu a) số lớn lắm
b) \(3^{-3}\cdot3^5\cdot3^x=3^8\)
=> \(\frac{1}{27}\cdot3^5\cdot3^x=3^8\)
=> \(\frac{1}{27}\cdot3^x=3^3\)
=> \(3^x=3^3:\frac{1}{27}=3^3:\left(\frac{1}{3}\right)^3=3^3:\frac{1^3}{3^3}=3^3\cdot3^3=3^6\)
=> x = 6
b) \(\left(7x+2\right)^{-1}=3^{-2}\)
=> \(\frac{1}{7x+2}=\frac{1}{9}\)
=> 7x + 2 = 9
=> 7x = 7
=> x = 1
Bài 2:
a) \(3^4\cdot\frac{1}{729}\cdot81^3\cdot\frac{1}{9^2}\)
\(=3^4\cdot\left(\frac{1}{3}\right)^6\cdot\left(3^4\right)^3\cdot\left(\frac{1}{3}\right)^4\)
\(=3^4\cdot\left(\frac{1}{3}\right)^6\cdot3^{12}\cdot\left(\frac{1}{3}\right)^4=3^{16}\cdot\left(\frac{1}{3}\right)^{10}=\frac{3^{16}}{3^{10}}=3^6\)
b) \(\left(8\cdot2^5\right):\left(2^4\cdot\frac{1}{32}\right)=\left(2^3\cdot2^5\right):\left(2^4\cdot\left(\frac{1}{2}\right)^5\right)\)
\(=2^8:\left(2^4\cdot\frac{1^5}{2^5}\right)=2^8:\left(\frac{2^4}{2^5}\right)=2^8:2^{-1}=512\)
c) \(12^8\cdot9^{12}=\left(2^2\cdot3\right)^8\cdot\left(3^2\right)^{12}=2^{16}\cdot3^8\cdot3^{24}=2^{16}\cdot3^{32}\)
d) Tương tự
a)
\(\begin{array}{l}\frac{1}{9} - 0,3.\frac{5}{9} + \frac{1}{3}\\ = \frac{1}{9} - \frac{3}{{10}}.\frac{5}{9} + \frac{1}{3}\\ = \frac{1}{9} - \frac{3}{{2.5}}.\frac{5}{{3.3}} + \frac{1}{3}\\ = \frac{1}{9} - \frac{1}{6} + \frac{1}{3}\\ = \frac{2}{{18}} - \frac{3}{{18}} + \frac{6}{{18}}\\ = \frac{5}{{18}}\end{array}\)
b)
\(\begin{array}{l}{\left( {\frac{{ - 2}}{3}} \right)^2} + \frac{1}{6} - {\left( { - 0,5} \right)^3}\\ = \frac{4}{9} + \frac{1}{6} - \left( {\frac{{ - 1}}{2}} \right)^3\\ = \frac{4}{9} + \frac{1}{6} - \left( {\frac{{ - 1}}{8}} \right)\\ = \frac{4}{9} + \frac{1}{6} + \frac{1}{8}\\ = \frac{{32}}{{72}} + \frac{{12}}{{72}} + \frac{9}{{72}}\\ = \frac{{53}}{{72}}\end{array}\)
P/S : Good Luck
~Best Best~