Cho 2 số hữu tỉ a,b thoả mãn
\(a+b=a.b=\frac{a}{b}\)
a) Chứng minh \(\frac{a}{b}=a-1\)
b) Tìm a,b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a-b=2a+2b\)
\(-2b-b=2a-a\)
\(-3b=a=>a=-3b\left(Dpcm\right)\)
\(a=-3b=>\frac{a}{b}=\frac{1}{-3}\)
1)
\(\frac{a}{b}=\frac{a\left(b+c\right)}{b\left(b+c\right)}=\frac{ab+ac}{b\left(b+c\right)}\)
\(\frac{a+c}{b+c}=\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+bc}{b\left(b+c\right)}\)
mà ab = ab; ac > bc ( vì a > b )
=> \(\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)
\(\Leftrightarrow\left(a+b\right)^2-2\left(ab+1\right)+\left(\frac{ab+1}{a+b}\right)^2=0\)
\(\Leftrightarrow\left(a+b-\frac{ab+1}{a+b}\right)^2=0\)
\(\Leftrightarrow ab+1=\left(a+b\right)^2\Rightarrow\sqrt{ab+1}=a+b\in Q\left(Q.E.D\right)\)
\(ab=\frac{a}{b}\)
\(a+b=ab=>ab-a-b=0\)
\(ab-b=a\)
\(b.\left(a-1\right)=a\)
\(\frac{a}{b}=a-1\)