Nếu b=a-1 thì (a+b)(a^2+b^2)(a^4+b^4)...(a^32+b^32)=a^64-b^64
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ a = b + 1 ta suy ra \(a-b=1\)
Do đó : \(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\left(a^8+b^8\right)...\left(a^{32}+b^{32}\right)=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\left(a^8+b^8\right)...\left(a^{32}+b^{32}\right)=\left(a^2-b^2\right)\left(a^2+b^2\right)...\left(a^{32}+b^{32}\right)=\left(a^4-b^4\right)\left(a^4+b^4\right)...\left(a^{32}+b^{32}\right)\)
Tiếp tục thu gọn theo cách trên ta được đpcm.
Có: \(b=a-1\Rightarrow a-b=1\)
\(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)...\left(a^{32}+b^{32}\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)...\left(a^{32}+b^{32}\right)\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(a^4+b^4\right)...\left(a^{32}+b^{32}\right)\)
\(=\left(a^{32}-b^{32}\right)\left(a^{32}+b^{32}\right)=a^{64}-b^{64}\)
Từ đầu bài
=> 1.\(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\) \(+...+\left(a^{32}+b^{32}\right)\)= \(a^{64}-b^{64}\)
=> \(\left(a-b\right)\left(a+b\right)+...+\left(a^{32}+b^{32}\right)\)= \(a^{64}+b^{64}\)
=> \(\left(a^2-b^2\right)\left(a^2+b^2\right)+...+\left(a^{32}+b^{32}\right)\)= a^64 + b^64
tương tự sẽ ra kết quả cuối là \(\left(a^{32}-b^{32}\right)\left(a^{32}+b^{32}\right)=a^{64}-b^{64}\left(đpcm\right)\)
ta có \(a^2-b^2=\left(a+b\right)\left(a-b\right)\) => \(\frac{a^2-b^2}{a-b}=a+b\)
\(a^4-b^4=\left(a^2-b^2\right)\left(a^2+b^2\right)\)=> \(\frac{a^4-b^4}{a^2-b^2}=a^2+b^2\)
\(a^8-b^8=\left(a^4-b^4\right)\left(a^4+b^4\right)\) => \(\frac{a^8-b^8}{a^4-b^4}=a^4+b^4\)
...............................................................................................
\(a^{64}-b^{64}=\left(a^{32}-b^{32}\right)\left(a^{32}+b^{32}\right)\) => \(\frac{a^{64}-b^{64}}{a^{32}-b^{32}}=a^{32}+b^{32}\)
thay vào ta được
\(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)......\left(a^{32}+b^{32}\right)\)
\(=\frac{a^2-b^2}{a-b}.\frac{a^4-b^4}{a^2-b^2}.\frac{a^8-b^8}{a^4-b^4}.............\frac{a ^{64}-b^{64}}{a^{32}-b^{32}}\)
\(=\frac{a^{64}-b^{64}}{a-b}\)
mà a-b= 1 nên \(\frac{a^{64}-b^{64}}{a-b}=a^{64}-b^{64}\)
Cần chứng minh với b=a-1 thì (a+b)(a^2+b^2)...(a^(2^p)+b^(2^p) = a^(2^(p+1)) - b^(2^(p+1)) (1)
Với p=0 thì a+b = a^2-b^2
hay 2a-1 = a^2 - (a-1)^2
hay 2a-1 = a^2 - (a^2 - 2a - 1)
hay 2a-1 = 2a -1
Điều này đúng nên (1) đúng với p = 0
Dùng quy nạp, giả thiết (1) đúng với p, chứng minh đúng với p+1.
Hay cần chứng minh (a^(2^(p+1)) - b^(2^(p+1))).(a^(2^(p+1)) + b^(2^(p+1))) = a^(2^(p+2)) - b^(2^(p+2)) (2)
Đặt a^(2^(p+1)) = A, b^(2^(p+1)) = B thì
(2) tương đương với (A - B).(A + B) = A^2 - B^2
hay A^2 - B^2 = A^2 - B^2 (đúng)
Vậy (2) đúng.
Theo quy nạp ta có điều phải chứng minh.