K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2021

a)Xét \(\left(\dfrac{a+b}{2}\right)^2-\dfrac{a^2+b^2}{2}=\)\(\dfrac{a^2+2ab+b^2-2\left(a^2+b^2\right)}{4}\)\(=\dfrac{-a^2+2ab-b^2}{4}\)\(=\dfrac{-\left(a-b\right)^2}{4}\le0\forall a;b\)

\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\) (bạn ghi sai đề?) 

Dấu = xảy ra <=> a=b

b) \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)-\left(a^8+b^8\right)\left(a^4+b^4\right)\)

\(=a^{12}+a^{10}b^2+a^2b^{10}+b^{12}-\left(a^{12}+a^8b^4+a^4b^8+b^{12}\right)\)

\(=a^2b^2\left(a^8+b^8-a^6b^2-a^2b^6\right)\)

\(=a^2b^2\left(a^2-b^2\right)\left(a^6-b^6\right)=a^2b^2\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) với mọi a,b

=> \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\left(a^8+b^8\right)\left(a^4+b^4\right)\)

Dấu = xảy ra <=>a=b

 

26 tháng 7 2021

Đây nhé! Tích giúp c nhaundefined

26 tháng 7 2021

batngo

2 tháng 4 2018

Thực hiện phép nhân đa thức với đa thức ở vế trái. 

=> VT = VP (đpcm)

17 tháng 10 2021

\(a,a^2+b^2=\left(a+b\right)^2-2ab=9^2-2\cdot20=41\\ b,a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=41^2-2\left(ab\right)^2\\ =1681-2\cdot400=881\\ c,\left(a-b\right)^2=a^2+b^2-2ab=41-2\cdot20=1\\ \Rightarrow a-b=1\\ \Rightarrow C=a^2-b^2=\left(a-b\right)\left(a+b\right)=9\cdot1=9\)

a: \(a^4+b^4\ge2a^2b^2\)

\(\Leftrightarrow a^4-2a^2b^2+b^4>=0\)

hay \(\left(a^2-b^2\right)^2\ge0\)(luôn đúng)

d: \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

các bạn giúp mik với (giúp đc nhiều thì giúp mai nộp rồi)Bài 1.Tính:a) (a2- 4)(a2+4)                            b) (a-b+c)(a+b+c)               g)  (a – 5)(a2 + 10a + 25)c) (a-b)(a+b)(a2+b2)(a4+b4)        d) (3x+y-2)2                        h) (x2- 4x + 16)(x+4)e) (22 - 1)(22 +1)(24 + 1)(28 + 1)   f) (x+y)3 - (x-y)3              k) Bài 2: Tìm x biết: a) (2x + 1)2 - 4(x + 2)2 = 9;        b) (x -2)2 – (x +3)2 = 45c) (x - 3)(x2 + 3x + 9) + x(x + 2)(2 - x) = 1;                  d) (x +...
Đọc tiếp

các bạn giúp mik với (giúp đc nhiều thì giúp mai nộp rồi)

Bài 1.Tính:

a) (a2- 4)(a2+4)                            b) (a-b+c)(a+b+c)               g)  (a – 5)(a2 + 10a + 25)c) (a-b)(a+b)(a2+b2)(a4+b4)        d) (3x+y-2)2                        h) (x2- 4x + 16)(x+4)

e) (22 - 1)(22 +1)(24 + 1)(28 + 1)   f) (x+y)3 - (x-y)3              k)

Bài 2: Tìm x biết:

a) (2x + 1)2 - 4(x + 2)2 = 9;        

b) (x -2)2 – (x +3)2 = 45

c) (x - 3)(x2 + 3x + 9) + x(x + 2)(2 - x) = 1;                  

d) (x + 1)3 - (x - 1)3 - 6(x - 1)2 = -10

Bài 3.Biết số tự nhiên x chia cho 7 dư 6.CMR:x2 chia cho 7 dư 1

Bài 4. So sánh:

a) A = 1997 . 1999 và B = 19982

b)A = 4(32 + 1)(34 + 1)…(364 + 1) và B = 3128 - 1

Bài 5: Cho tam giác ABC các đường trung tuyến BD và CE cắt nhau ở G . gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE // IK, DE = IK

Bài 6: Cho tam giác ABC. Trên cạnh AB lấy hai điểm M, N sao cho AM = MN = NB. Từ M và N kẻ các đường thẳng song song với BC, chúng cắt AC tại E và F. Tính độ dài các đoạn thẳng NF và BC biết ME = 5cm.

Bài 7: Cho D ABC có BC =4cm, các trung tuyến BD, CE. Gọi M,N theo thứ tự là trung điểm của BE,CD. Gọi giao điểm của MN với BD,CE theo thứ tự là P, Q

a) Tính MN                        b) CMR: MP =PQ =QN

Bài 8: Cho hình thang ABCD (AB // CD) các tia phân giác góc ngoài đỉnh A và D cắt nhau tại H. Tia phan giác góc ngoài đỉnh B và C cắt nhau ở K. CMR:

a)     AH ^ DH ; BK ^ CK

b)    HK // DC

c)     Tính độ dài HK biết AB = a ; CD = b ; AD = c ; BC = dBài 1.Tính:

 

3
7 tháng 10 2021

\(a,=a^8-16\\ b,\left(a+c\right)^2-b^2=a^2+2ac+c^2-b^2\\ c,=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\\ =\left(a^4-b^4\right)\left(a^4+b^4\right)=a^8-b^8\\ d,=\left[\left(3x+y\right)-2\right]^2=\left(3x+y\right)^2-4\left(3x+y\right)+4\\ =9x^2+6xy+y^2-12x-4y+4\\ h,=x^3+64\\ e,=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1=...\\ f,=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\\ =2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\\ =2y\left(3x^2+y^2\right)\)

7 tháng 10 2021

e đăng đừng Ctrl+V nhiều quá lóe mắt :vv

NV
18 tháng 12 2020

Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với 0, không mất tính tổng quát, giả sử đó là a và b

\(\Rightarrow ab\ge0\)

Mặt khác do \(c\le1\Rightarrow\left\{{}\begin{matrix}1-c^2\ge0\\1-c\ge0\end{matrix}\right.\)

\(\Rightarrow2ab\left(1-c\right)+1-c^2\ge0\)

\(\Leftrightarrow2ab+1\ge2abc+c^2\)

\(\Leftrightarrow a^2b^2+2ab+1\ge a^2b^2+2abc+c^2\)

\(\Leftrightarrow\left(ab+c\right)^2\le\left(1+ab\right)^2\le\left(1+a^2\right)\left(1+b^2\right)\) (1)

Từ giả thiết:

\(a^2+b^2+c^2\le1+2abc\Leftrightarrow a^2b^2-2abc+c^2\le1-a^2-b^2+a^2b^2\)

\(\Leftrightarrow\left(ab-c\right)^2\le\left(1-a^2\right)\left(1-b^2\right)\) (2)

Nhân vế với vế (1) và (2):

\(\left(ab+c\right)^2\left(ab-c\right)^2\le\left(1+a^2\right)\left(1+b^2\right)\left(1-a^2\right)\left(1-b^2\right)\)

\(\Leftrightarrow1+2a^2b^2c^2\ge a^4+b^4+c^4\) (đpcm)

Dấu "=" xảy ra khi 1 số bằng 1 và 2 số bằng nhau

16 tháng 9 2019