\(t\text{ính}A=1+5+5^2+5^3+...+5^{49}+5^{50}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A=1+5+52+...+550
=>5A=5+52+...+551
=>5A-A=(5+52+...+551)-(1+5+52+...+550)
=>4A=551-1
=>A=(551-1) :4
Chúc bạn học giỏi!
\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)
=> \(5\text{A}=5+5^2+5^3+5^4...+5^{49}+5^{50}+5^{51}\)
=> \(5\text{A-A}=5+5^2+5^3+5^4...+5^{49}+5^{50}+5^{51}\) - (\(1+5+5^2+5^3+...+5^{49}+5^{50}\) )
=> \(5\text{A-A}=5+5^2+5^3+5^4...+5^{49}+5^{50}+5^{51}\) - \(1-5-5^2-5^3-...-5^{49}-5^{50}\)
=> \(4\text{A}=5^{51}-1\)
=> \(A=\dfrac{5^{51}-1}{4}\)
A=1+\((5+5^2+5^3+...+5^{50})\) 5A=\(5+5^2+5^3+...+5^{51}\) 5A=\((1+5+5^2+...+5^{^{ }50})+5^{51}-1\) 5A=A+\(5^{51}-1\) 5A-A=\((5^{51}-1)\) -A A=\(\dfrac{5^{51-1}}{4}\)
\(A=1+5+5^2+5^3+....+5^{49}+5^{50}\)
\(5A=5+5^2+5^3+5^4+.....+5^{50}+5^{51}\)
\(5A-A=5+5^2+5^3+5^4+......+5^{50}+5^{51}-\left(1+5+5^2+5^3+......+5^{49}+5^{50}\right)\)
\(4A=5+5^2+5^3+5^4+......+5^{50}+5^{51}-1-5-5^2-5^3-5^4-.....-5^{49}-5^{50}\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
5A=5+5^2+5^3+........+5^51
5A-A=(5+5^2+5^3+....+5^51)-(1+5+5^2+....+5^50)
4A=5^51-1
A=5^51-1/4
bài này chỉ làm dược vậy không tính dược kết quả
A=1+5+5^2+5^3+...+5^49+5^50
5A= 5+5^2 +...+5^51
ta co : 5A-A= 5^51 - 1
4A= 5^51-1
=> A= 5^51-1/4
A = 1+5+52+53+....+550
5A = 5+52+53+54+...+551
4A = 5A - A = 551 - 1
=> A = \(\frac{5^{51}-1}{4}\)
Ta có: A=1+5+52+53+…+549+550
=>5.A=5+52+53+54+…+550+551
=>5.A-A=5+52+53+54+…+550+551-1-5-52-53-…-549-550
=>4.A=551-1
=>\(A=\frac{5^{51}-1}{4}\)