Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 1 + 5 + 52 + ...... + 549 + 550
=> 5A = 5 + 52 + 53+..... + 550 + 551
=> 5A - A = 551 - 1
=> 4A = 551 - 1
=> \(A=\frac{5^{51}-1}{4}\)
\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)
5A=\(5+5^2+5^3+...+5^{50}+5^{51}.\)
5A-A=\(\left(5+5^2+5^3+.....+5^{50}+5^{51}\right)-\left(1+5+5^2+5^3+...+5^{49}+5^{50}.\right)\)
4A=\(5^{51}-1\)
\(=>A=\frac{5^{51}-1}{4}\)
Gọi A = 5⁰ + 5¹ + 5² + 5³ +... + 5⁴⁹ + 5⁵⁰.
Vậy, 5A = 5¹ + 5² + 5³ +... + 5⁵⁰ + 5⁵¹.
5A - A = 4A = (5¹ + 5² + 5³ +... + 5⁵⁰) + 5⁵¹ - 5⁰ + (5¹ + 5² + 5³ +... + 5⁴⁹ + 5⁵⁰) = 5⁵¹ - 1.
Tức, A = (5⁵¹ - 1)/4.
\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)
\(\Rightarrow5A=5+5^2+5^3+...+5^{51}\)
\(\Rightarrow4A=5^{51}-1\)
\(\Rightarrow A=\frac{5^{51}-1}{4}\)
\(5A=5+5^2+5^3+...+5^{50}+5^{51}\)
\(-\)
\(A=1+5+5^2+5^3+...+5^{50}\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
\(5A=5^1+5^2+5^3+...+5^{51}\)
\(4A=5A-A=5^{51}-1\)
\(\Rightarrow A=\frac{5^{51}-1}{4}\)
\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)
=> \(5\text{A}=5+5^2+5^3+5^4...+5^{49}+5^{50}+5^{51}\)
=> \(5\text{A-A}=5+5^2+5^3+5^4...+5^{49}+5^{50}+5^{51}\) - (\(1+5+5^2+5^3+...+5^{49}+5^{50}\) )
=> \(5\text{A-A}=5+5^2+5^3+5^4...+5^{49}+5^{50}+5^{51}\) - \(1-5-5^2-5^3-...-5^{49}-5^{50}\)
=> \(4\text{A}=5^{51}-1\)
=> \(A=\dfrac{5^{51}-1}{4}\)
Đặt A = 1 + 5 + 52 + ....+550
=> 5A = 5 + 52 + ....+551
=> 5A - A = 551 - 1
=> 4A =551 - 1
=> A \(=\frac{5^{51}-1}{4}\)
Đặt A= 1+5+52+...+550
5A=5+52+53+...+551
4A=551-1
A=\(\frac{5^{51}-1}{4}\)
S4 = 12 + 22 + 32 + ... + 492 + 502
S4 = 1 + 2 ( 1 + 1 ) + 3 ( 2 + 1 ) + ... + 49 ( 48 + 1 ) + 50 ( 49 + 1 )
S4 = 1 + 1.2 + 2 + 2.3 + 3 + ... + 48 . 49 + 49 + 49 . 50 + 50
S4 = ( 1 + 2 + 3 + ... 49 + 50 ) + ( 1.2 + 2.3 + ... + 48 . 49 + 49 . 50 )
đặt A = 1 + 2 + 3 + ... 49 + 50
Ta tính được : A = 1275
đặt B = 1.2 + 2.3 + ... + 48 . 49 + 49 . 50
3B = 1.2.3 + 2.3.3 + ... + 48.49.3 + 49.50.3
3B = 1.2.3 + 2.3.(4-1) + ... + 48.49.(50-47) + 49.50.(51-48)
3B = 1.2.3 + 2.3.4 - 1.2.3 + ... + 48.49.50 - 47.48.49 + 49.50.51-48.49.50
3B = 49.50.51
B = 49.50.51 : 3 = 41650
=> S4 = 41650 + 1275 = 42925
S5 = 13 + 23 + 33 + ... 493 + 503
S5 = 1 + 22 ( 1 + 1 ) + 32 ( 2 + 1 ) + ... 492 ( 48 + 1 ) + 502 ( 49 + 1 )
S5 = 12 + 1.22 + 22 + 2.32 + 32 + ... + 48.492 + 492 + 49.502 + 502
S5 = ( 12 + 22 + 32 + ... + 492 + 502 ) + ( 1.22 + 2.32 + ... + 48.492 + 49.502 )
đặt Y = 12 + 22 + 32 + ... + 492 + 502
Y = 42925
đặt M = 1.22 + 2.32 + ... + 48.492 + 49.502
M = 1.2.(3-1) + 2.3.(4-1) + ... + 48.49.(50-1) + 49.50.(51-48)
M = (1.2.3+2.3.4+...+48.49.50+49.50.51)-(1.2+2.3+...+48.49+49.50)
đến đây đơn giản rồi
Rút gọn:
\(A=5^0+5^1+5^2+...+5^{99}+5^{50}\)
\(5A=5^1+5^2+5^3+...+5^{51}\)
\(5A-A=\left(5^1+5^2+5^3+...+5^{51}\right)-\left(5^0+5^1+5^2+...+5^{50}\right)\)
\(4A=5^{51}-5^0\)
\(=>A=\left(5^{51}-5^0\right):4\)
Vậy : \(A=\left(5^{51}-5^0\right):4\)
A=1+\((5+5^2+5^3+...+5^{50})\) 5A=\(5+5^2+5^3+...+5^{51}\) 5A=\((1+5+5^2+...+5^{^{ }50})+5^{51}-1\) 5A=A+\(5^{51}-1\) 5A-A=\((5^{51}-1)\) -A A=\(\dfrac{5^{51-1}}{4}\)