Chứng minh:
A=5+52+53+...+58 chia hết cho 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sơ đồ con đường |
Lời giải chi tiết |
|
Ta có: C = 5 + 5 2 + 5 3 + ... + 5 8 = 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + 5 7 + 5 8 = 30 + 5 2 5 + 5 2 + 5 4 5 + 5 2 + 5 6 5 + 5 2 = 30 + 5 2 5 + 5 2 + 5 4 5 + 5 2 + 5 6 5 + 5 2 = 30 + 5 2 .30 + 5 4 .30 + 5 6 .30 = 30. 1 + 5 2 + 5 4 + 5 6 Áp dụng tính chất chia hết của một tích ta có: 30 ⋮ 30 ⇒ 30. 1 + 5 2 + 5 4 + 5 6 ⋮ 30 ⇒ C = 30. 1 + 5 2 + 5 4 + 5 6 ⋮ 30 |
M=(5+5^2)+...+(5^79+5^80)
M=30.1+...+5^78+(5^1+5^2)
M=30(1+...+5^78) /30
VẬY M / 30
M=(5+5^2)+5^2(5+5^2)+...+5^78(5+5^2)
=30(1+5^2+...+5^78) chia hết cho 30
A = 5 + 52 + 53 +...+ 58
A = (5 + 52) +( 53 + 54) +...+ ( 57 + 58)
A = 30 + 52.(5 + 52) +...+ 56.(5 + 52)
A = 30.( 1 + 52 +...+ 56) (đpcm)
Ta có: A = 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + 5 7 + 5 8
= 5 + 5 2 + 5 2 5 + 5 2 + 5 4 5 + 5 2 + 5 6 5 + 5 2
= 30 + 5 2 . 30 + 5 4 . 30 + 5 6 . 30
= 30 . ( 1 + 5 2 + 5 4 + 5 6 ) ⋮ 30
Vậy A là bội của 30
\(B=5+5^2+5^3+...+5^{20}\\ B=\left(5+5^2\right)+5^2\left(5+5^{\text{2}}\right)+.....+5^{18}\left(5+5^2\right)\\ B=30+5^2\cdot30+...+5^{18}\cdot30\\ B=30\left(1+5^2+...+5^{18}\right)\\ =>30\left(1+5^2+...+5^{18}\right)⋮30\\ CMR:B⋮30\)
Ba bạn Lan Thu Cúc mặc ba cái áo màu trắng vàng Hồng và cài 3 cái nơ cùng màu trắng và Hồng biết rằng
chỉ có bạn Lan là có màu áo và màu nơ giống nhau B màu áo và màu nơ của Thu đều không phải làm trắng C Cúc cài nơ màu hồng Hãy xác định xem bạn nào mặc màu gì và cái nơ màu gì
cho C=5+52+53+54+...+520 chứng minh rằng:
a)C chia hết cho 5 b) C chia hết cho 6 c) C chia hết cho 13
\(a,C=5+5^2+5^3+5^4+\cdot\cdot\cdot+5^{20}\)
\(=5\left(1+5+5^2+\cdot\cdot\cdot+5^{19}\right)\)
Ta thấy: \(5\left(1+5+5^2+\cdot\cdot\cdot+5^{19}\right)⋮5\)
nên \(C⋮5\)
\(b,C=5+5^2+5^3+5^4\cdot\cdot\cdot+5^{20}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdot\cdot\cdot+\left(5^{19}+5^{20}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+\cdot\cdot\cdot+5^{19}\left(1+5\right)\)
\(=5\cdot6+5^3\cdot6+\cdot\cdot\cdot+5^{19}\cdot6\)
\(=6\cdot\left(5+5^3+\cdot\cdot\cdot+5^{19}\right)\)
Ta thấy: \(6\cdot\left(5+5^3+\cdot\cdot\cdot+5^{19}\right)⋮6\)
nên \(C⋮6\)
\(c,C=5+5^2+5^3+5^4+\cdot\cdot\cdot+5^{20}\)
\(=\left(5+5^3\right)+\left(5^2+5^4\right)+\cdot\cdot\cdot+\left(5^{17}+5^{19}\right)+\left(5^{18}+5^{20}\right)\)
\(=5\left(1+5^2\right)+5^2\left(1+5^2\right)+\cdot\cdot\cdot+5^{17}\cdot\left(1+5^2\right)+5^{18}\left(1+5^2\right)\)
\(=5\cdot26+5^2\cdot26+\cdot\cdot\cdot+5^{17}\cdot26+5^{18}\cdot26\)
\(=26\cdot\left(5+5^2+\cdot\cdot\cdot+5^{17}+5^{18}\right)\)
Ta thấy: \(26\cdot\left(5+5^2+\cdot\cdot\cdot+5^{17}+5^{18}\right)⋮13\)
nên \(C⋮13\)
#\(Toru\)
\(C=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)...+\left(5^{17}+5^{18}+5^{19}+5^{20}\right)\\ C=5\left(1+5+5^2+5^3\right)+5^5\left(1+5+5^2+5^3\right)...+5^{17}\left(1+5+5^2+5^3\right)\\ C=5\cdot156+5^5\cdot156+...+5^{17}\cdot156\\ C=156\left(5+5^5+...+5^{17}\right)\\ C=12\cdot13\left(5+5^5+...+5^{17}\right)⋮17\)
Bạn tham khảo hình ảnh :
Cre : khoahoc.vietjack.com
Hok tốttt
\(\text{Ta có: }\)
\(C=5+5^2+5^3+...5^8\)
\(=(5+5^2)+(5^3+5^4)+(5^5+5^6)+(5^7+5^8)\)
\(=30+5^2(5+5^2)+5^4(5+5^2)+5^6(5+5^2)\)
\(=30+5^2(5+5^2)+5^4(5+5^2)+5^6(5+5^2)\)
\(=30+5^2.30+5^4.30+5^6.30\)
\(=30.(1+5^2+5^4+5^6)\)
\(\text{Áp dụng tính chất chia hết của một tích ta có:}\)
\(30⋮30\Rightarrow30.(1+5^2+5^4+5^6)⋮30\)
\(\Rightarrow C=30.(1+5^2+5^4+5^6)⋮30\)