tìm nghiệm nguyên của phương trình:\(y^2=-2\left(x^6-x^3y-32\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y^2=-2\left(x^6-x^3y-32\right)\)
\(\Leftrightarrow2x^6-2x^3y+y^2=64\)
\(\Leftrightarrow4x^6-4x^3y+2y^2=128\)
\(\Leftrightarrow\left(2x^3-y\right)^2+y^2=128\)
Áp dụng bất đẳng thức sau: \(A^2+B^2\ge\dfrac{\left(A+B\right)^2}{2}\), ta có:
\(\left(2x^3-y\right)^2+y^2\ge\dfrac{\left(2x^3-y+y\right)^2}{2}=2x^6\)
\(\Leftrightarrow128\ge2x^6\Leftrightarrow x^6\le64\)
\(\Leftrightarrow-2\le x^2\le2\)
Vậy \(x\in\left\{-2;-1;0;1;2\right\}\)
\(y^2=-2\left(x^6-x^3y-32\right)\Leftrightarrow2x^6-2x^3y+y^2=64\Leftrightarrow4x^6-4x^3y+2y^2=128\)
\(\Leftrightarrow\left(2x^3-y\right)^2+y^2=128\)
# Chứng minh và áp dụng bất đẳng thức sau \(A^2+B^2\ge\frac{\left(A+B\right)^2}{2}\), ta có :
\(\left(2x^3-y\right)^2+y^2\ge\frac{\left(2x^3-y+y\right)^2}{2}=2x^6\Leftrightarrow128\ge2x^6\Leftrightarrow x^6\le64\Leftrightarrow-2\le x^2\le2\)
Mà x nguyên ( gt ) nên x có các giá trị sau : \(-2;-1;0;1;2\)
Nên các giá trị của x vào phương trình và giải tìm y ( lưu ý xét điều kiện nguyên của y )
Chuyển vế ta được:
y2+2(x6−3x3y−32)=0y2+2(x6−3x3y−32)=0
↔y2−6x3y+(2x6−64)=0<1>↔y2−6x3y+(2x6−64)=0<1>
Nhận thấy coi <1><1> là phương trình bậc hai ẩn yy
Do đó để phương trình có nghiệm và hơn nữa là nghiệm nguyên thì Δ=(6x3)2−4(2x6−64)Δ=(6x3)2−4(2x6−64) phải chính phương
Do đó đặt x3=kx3=k và (6x3)2−4(2x6−64)=q2(6x3)2−4(2x6−64)=q2
Như vậy 36k2−8k2+256=q2→28k2+256=q2→2|q→q=2t→7k2+64=t236k2−8k2+256=q2→28k2+256=q2→2|q→q=2t→7k2+64=t2
Nếu tt lẻ thì kk lẻ do đó 7k2+64≡3(mod4)→t2≡3(mod4)7k2+64≡3(mod4)→t2≡3(mod4) vô lý do số chính phương chia 44 dư 0,10,1
Như vậy tt chẵn nên kk chẵn và t=2b,k=2a→7a2+16=b2t=2b,k=2a→7a2+16=b2
Lập luận tương tự cũng cób,ab,a chẵn nên a=2m,b=2n→7m2+4=n2a=2m,b=2n→7m2+4=n2
Lập luận tương tự một lần nữa có m,nm,n chẵn nên m=2p,n=2q→7p2+1=q2<2>m=2p,n=2q→7p2+1=q2<2>
Tổng hợp các phương trình trên có k=8p,t=8qk=8p,t=8q như vậy x3=8p→2|x→x=2s→s3=px3=8p→2|x→x=2s→s3=p
Khi ấy bài này trở thành 7s6+1=q27s6+1=q2
bài 1
coi bậc 2 với ẩn x tham số y D(x) phải chính phường
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
=> -8y^2 +1 =k^2 => y =0
với y =0 => x =-1 và -2
1.
\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)
Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:
\(t^2-3m.t+m=0\) (1)
Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:
TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)
\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)
\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)
TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)
\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)
\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)
Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)
2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)
Ko tồn tại m thỏa mãn
Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?