K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2018

\(\sqrt{9x^2-6x+5}=1-x^2\)

\(\Leftrightarrow9x^2-6x+5=\left(1-x^2\right)^2\)

\(\Leftrightarrow9x^2-6x+5=1-2x^2+x^4\)

\(\Leftrightarrow9x^2-6x+5-1+2x^2-x^4=0\)

\(\Leftrightarrow-x^4+11x^2-6x+4=0\)

\(\Leftrightarrow x^4-11x^2+6x-4=0\)

22 tháng 9 2018

<=>\(\sqrt{9x^2-6x+5}=1-x^2\)

<=>\(\sqrt{\left(9x^2-6x+1\right)+4}=1-x^2\)

<=>\(\sqrt{\left(3x-1\right)^2+4}=1-x^2\)

<=> 3x - 1 + 2 = 1 - x2

<=> 3x + x2 = 1 +1 - 2

<=> x(3+x) = 0

<=> x = o hoặc 3+x =0 <=> x = -3

Vậy S= {0;-3}

7 tháng 10 2018

\(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\)(ĐKXĐ: \(\frac{3}{2}\le x\le\frac{5}{2}\))

\(\Leftrightarrow2\sqrt{2x-3}+2\sqrt{5-2x}=6x^2-24x+28\)

\(\Leftrightarrow6x^2-24x+28-2\sqrt{2x-3}-2\sqrt{5-2x}=0\)

\(\Leftrightarrow\left(2x-3-2\sqrt{2x-3}+1\right)+\left(5-2x-2\sqrt{5-2x}+1\right)+6x^2-24x+24=0\)

\(\Leftrightarrow\left(\sqrt{2x-3}-1\right)^2+\left(\sqrt{5-2x}-1\right)^2+6\left(x-2\right)^2=0\)

Do \(\left(\sqrt{2x-3}-1\right)^2\ge0;\left(\sqrt{5-2x}-1\right)^2\ge0;6\left(x-2\right)^2\ge0\forall x\in R\)

Nên \(\hept{\begin{cases}\sqrt{2x-3}-1=0\\\sqrt{5-2x}-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x-3=1\\5-2x=1\\x=2\end{cases}}\Leftrightarrow x=2\)(t/m ĐKXĐ)

Vậy pt có nghiệm duy nhất là x=2.

NV
19 tháng 1 2022

ĐKXĐ: \(x^2-4x+1\ge0\)

\(2x+2+2\sqrt{x^2-4x+1}=6\sqrt{x}\)

\(\Leftrightarrow2x+2-5\sqrt{x}+2\sqrt{x^2-4x+1}-\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{4x^2-17x+4}{2x+2+5\sqrt{x}}+\dfrac{4x^2-17x+4}{2\sqrt{x^2-4x+1}+\sqrt{x}}=0\)

\(\Leftrightarrow\left(4x^2-17x+4\right)\left(\dfrac{1}{2x+2+5\sqrt{x}}+\dfrac{1}{2\sqrt{x^2-4x+1}+\sqrt{x}}\right)=0\)

\(\Leftrightarrow4x^2-17x+4=0\)

\(\Leftrightarrow...\)

24 tháng 3 2019

đặt   \(x^2+x+2\)  là a  ; đặt  \(x+1\)là b

\(\Rightarrow a+b=x^2+x+2+x+1\)\(=x^2+2x+3\)

\(\Rightarrow a^3+b^3=\left(a+b\right)^3\)

\(\Rightarrow a^3+b^3=a^3+3a^2b+3ab^2+b^3\)

\(\Rightarrow3a^2b+3ab^2=0\)\(\Rightarrow3ab\left(a+b\right)=0\)\(\Rightarrow\)\(a=0\)hoặc \(b=0\)hoặc \(a+b=0\)

* nếu a = 0  \(\Rightarrow\) \(x^2+x+2=0\)( vô lí vì luôn dương, cái này dễ chứng minh nha)

* nếu b = 0   \(\Rightarrow x+1=0\Rightarrow x=-1\)

* nếu a + b = 0 \(\Rightarrow x^2+2x+3=0\)(cái này cũng luôn dương nhé)

Vậy phương trình có 1 nghiệm là x = -1 

chúc bạn học tốt nha <3

Thanks bạn nhìu

17 tháng 9 2015

Ta có

\(\sqrt{-x^2+2x+2}=\sqrt{-x^2+2x-1+3}=\sqrt{-\left(x-1\right)^2+3}\le\sqrt{3}\)

\(\sqrt{-x^2-6x-8}=\sqrt{-x^2-6x-9+1}=\sqrt{-\left(x+3\right)^2+1}\le1\)

\(\Rightarrow\sqrt{-x^2+2x+2}+\sqrt{-x^2-6x-8}\le1+\sqrt{3}\)

Dấu "=" xảy ra khi x-1=0 và x+3=0 nên x=1  và x=-3(VL). Phương trình vô nghiệm

26 tháng 9 2016

\(2x+\left|x-\frac{1}{2}\right|=2\)

26 tháng 9 2016

Điều kiện x \(\ge\frac{1}{4}\)

Đặt a = \(\sqrt{x-\frac{1}{4}}\)(a \(\ge0\))

=> x = a2 + \(\frac{1}{4}\)

=> PT <=> 2a2 + \(\frac{1}{2}\)\(\sqrt{a^2+\frac{1}{4}+a}\)= 2

<=> \(\sqrt{a^2+\frac{1}{4}+a}\)\(\frac{3}{2}-2a\)

<=> a2 + 0,25 + a = 4a4 + 2,25 - 6a2

<=> 4a4 - 7a2 - a + 2 = 0

<=> (a + 1)(2a - 1)(2a2 - a - 2) = 0

<=> a = 0,5

<=> x = 0,5

NV
23 tháng 1

ĐKXĐ: \(0\le x\le9\)

Bình phương 2 vế ta được:

\(x+9-x+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\)

\(\Leftrightarrow-x^2+9x-2\sqrt{-x^2+9x}=0\)

\(\Leftrightarrow\sqrt{-x^2+9x}\left(\sqrt{-x^2+9x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{-x^2+9x}=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\-x^2+9x-4=0\end{matrix}\right.\)

Tới đây em tự hoàn thành nốt