Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
\(VT\le\sqrt{2\left(2x-3+5-2x\right)}=2\)
\(VP=3\left(x-2\right)^2+2\ge2\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}2x-3=5-2x\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow x=2\)
\(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\left(1\right)\)
ĐKXĐ: \(\frac{3}{2}\le x\le\frac{5}{2}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)
Dấu "=" xảy ra <=> \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)
Ta lại có VP=3x2-12x+14=3(x-2)2+2 >=2
Dấu "=" xảy ra khi x=2
Do đó VT=VP <=> x=2 (ttmđk)
Vậy S={2}
ĐKXĐ: \(x\ge0\)
\(\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
\(\Leftrightarrow...\)
ĐK: \(x\ge\dfrac{5}{3}\)
Ta có: \(\sqrt{2x+5}=2+\sqrt{3x-5}\)
\(\Leftrightarrow2x+5=4+3x-5+4\sqrt{3x-5}\)
\(\Leftrightarrow6-x=4\sqrt{3x-5}\) ĐK: x≤6
\(\Leftrightarrow36-12x+x^2=48x-80\)
\(\Leftrightarrow x^2-60x+116=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-58\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=58\end{matrix}\right.\)
So với điều kiện thì phương trình có nghiệm duy nhất là x = 2
\(ĐK:x\ge\dfrac{5}{3}\\ PT\Leftrightarrow\left(\sqrt{2x+5}-3\right)-\left(\sqrt{3x-5}-1\right)=0\\ \Leftrightarrow\dfrac{2x-4}{\sqrt{2x+5}+3}-\dfrac{3x-6}{\sqrt{3x-5}+1}=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{2}{\sqrt{2x+5}+3}-\dfrac{3}{\sqrt{3x-5}+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\dfrac{2}{\sqrt{2x+5}+3}=\dfrac{3}{\sqrt{3x-5}+1}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\sqrt{3x-5}+2=3\sqrt{2x+5}+9\\ \Leftrightarrow2\sqrt{3x-5}=7+3\sqrt{2x+5}\\ \Leftrightarrow4\left(3x-5\right)=49+9\left(2x+5\right)+42\sqrt{2x+5}\\ \Leftrightarrow12x-20=49+18x+45+42\sqrt{2x+5}\\ \Leftrightarrow-6x-144=42\sqrt{2x+5}\)
Vì \(x\ge\dfrac{5}{3}>0\Leftrightarrow-6x-144< 0< 42\sqrt{2x+5}\)
Do đó (1) vô nghiệm
Vậy PT có nghiệm \(x=2\)
1.
ĐKXĐ: ...
\(x^2-x+2=1\sqrt{x^2+x-1}+1\sqrt{x-x^2+1}\)
\(\Rightarrow x^2-x+2\le\dfrac{1}{2}\left(1+x^2+x-1\right)+\dfrac{1}{2}\left(1+x-x^2+1\right)\)
\(\Rightarrow x^2-2x+1\le0\)
\(\Rightarrow\left(x-1\right)^2\le0\)
\(\Rightarrow x=1\)
Thử lại ta thấy thỏa mãn
b.
ĐKXĐ: ...
Ta có:
\(VP=3\left(x-2\right)^2+2\ge2\)
\(VT=1\sqrt{2x-3}+1\sqrt{5-2x}\le\dfrac{1}{2}\left(1+2x-3\right)+\dfrac{1}{2}\left(1+5-2x\right)=2\)
\(\Rightarrow VT\le VP\)
Đẳng thức xảy ra khi:
\(\left\{{}\begin{matrix}x-2=0\\1=2x-3\\1=5-2x\end{matrix}\right.\) \(\Leftrightarrow x=2\)
Ta có:
\(\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{\left(1+1\right)\left(2x-3+5-2x\right)}=2\)
\(3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)
\(\Rightarrow\) phương trình có nghiệm khi và chỉ khi:
\(\left\{{}\begin{matrix}3\left(x-2\right)^2=0\\2x-3=5-2x\end{matrix}\right.\) \(\Rightarrow x=2\)
TXĐ : \(\left[\dfrac{3}{2};\dfrac{5}{2}\right]\).
Áp dụng BĐT Bunhiacopski :
\(VT^2=\left(\sqrt{2x-3}+\sqrt{5-2x}\right)^2\le\left(1^2+1^2\right)\left(2x-3+5-2x\right)=4\)
\(\Rightarrow VT\le2\)
Xảy ra khi \(\dfrac{\sqrt{2x-3}}{1}=\dfrac{\sqrt{5-2x}}{1}\Rightarrow x=2\)(1)
\(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)
Xảy ra khi \(x-2=0\Leftrightarrow x=2\)(2)
Từ (1)(2) => Pt có nghiệm x=2
\(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\)(ĐKXĐ: \(\frac{3}{2}\le x\le\frac{5}{2}\))
\(\Leftrightarrow2\sqrt{2x-3}+2\sqrt{5-2x}=6x^2-24x+28\)
\(\Leftrightarrow6x^2-24x+28-2\sqrt{2x-3}-2\sqrt{5-2x}=0\)
\(\Leftrightarrow\left(2x-3-2\sqrt{2x-3}+1\right)+\left(5-2x-2\sqrt{5-2x}+1\right)+6x^2-24x+24=0\)
\(\Leftrightarrow\left(\sqrt{2x-3}-1\right)^2+\left(\sqrt{5-2x}-1\right)^2+6\left(x-2\right)^2=0\)
Do \(\left(\sqrt{2x-3}-1\right)^2\ge0;\left(\sqrt{5-2x}-1\right)^2\ge0;6\left(x-2\right)^2\ge0\forall x\in R\)
Nên \(\hept{\begin{cases}\sqrt{2x-3}-1=0\\\sqrt{5-2x}-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x-3=1\\5-2x=1\\x=2\end{cases}}\Leftrightarrow x=2\)(t/m ĐKXĐ)
Vậy pt có nghiệm duy nhất là x=2.