Chứng minh rằng: 14^8^2004 + 10 chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Ta có: }14^{8^{2004}}+2\equiv5^{2004}+2\left(\text{mod 11}\right)\)
\(\equiv\left(5^{15}\right)^{133}.5^9+2\left(\text{mod 11}\right)\)
\(\equiv1^{133}.5^9+2\left(\text{mod 11}\right)\)
\(\equiv9+2\left(\text{mod 11}\right)\)
\(\equiv0\left(\text{mod 11}\right)\)
Vậy .... chia hết cho 11
a ) 10^2002+8=1000...008(có 2001 chữ số 0)
=>chia hết cho 2(tận cìng là 8)
tổng các chữ số 1+0+8=9 chia hết cho 9
=>số chia hết cho 9
b ) 10^2004+14=100...0014(có 2002 chữ số 0)
=>chia hết cho 2(tận cùng là 4)
tổng các chữ số 1+0+1+4=6 chia hết 3
=>số chia hết cho 3
1/
10^2002+8=1000...008(có 2001 chữ số 0)
=>chia hết cho 2(tận cìng là 8)
tổng các chữ số 1+0+8=9 chia hết cho 9
=>số chia hết cho 9
2/
10^2004+14=100...0014(có 2002 chữ số 0)
=>chia hết cho 2(tận cùng là 4)
tổng các chữ số 1+0+1+4=6 chia hết 3
=>số chia hết cho 3
tich nha
a. Ta có: 102002+8 = 10...000 (2002 số 0) + 8 = 10...008 (2001 số 0) có 8 tận cùng nên chia hết cho 2
và tổng các chữ số của nó là: 1+0+...+0+0+8=9 nên chia hết cho 9
Vậy 102002+8 chia hết cho 2 và 9.
b. Tương tự: = 10...014 (2002 số 0) có 4 tận cùng nên chia hể cho 2
và tổng các chữ số của nó là: 1+0+...+0+1+4=6 nên chia hết cho 3
Vậy 102004+14 chia hết cho 2 và 3.
a) 5+52+53+54+...+5100
= (5+52)+(53+54)+...+(599+5100)
= 30+52.(5+52)+...+598.(5+52)
= 30+52.30+...+598.30
= 30.(1+52+...+598)
Vì 30 chia hết cho 10
=> 30.(1+52+...+598) chia hết cho 10
=> 5+52+53+...+5100 chia hết cho 10
a) Lập bảng
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... |
7n | 7 | 9 | 3 | 1 | 7 | 9 | 3 | 1 | ... |
9n | 9 | 1 | 9 | 1 | 9 | 1 | 9 | 1 | ... |
Ta có: 2018 : 4 = 504 (dư 2)
Suy ra \(2017^{2018}+2019^{2018}= \overline{...9}+\overline{...1}=\overline{...0}\)
Vậy 20172018 + 20192018 chia hết cho 10
b) Làm tương tự như câu a)
Ta có:
\(19\equiv9\left(mod10\right)\)
\(11=1\left(mod10\right)\)
\(\Rightarrow19^{2005}+11^{2004}⋮10\)
a,19^2005+ 11^2004 =19^4.501.19
=x1.x9
=x9
11^2004=11^4.501
=x1
x1+x9= y0
suy ra điều cần phải chứng minh
tương tự 2 câu còn lại
a. VD: (12 + 30 + 68) \(⋮\)11 nên 123068 \(⋮\)11
Vậy: (ab + cd + eg) \(⋮\)11 thì abcdeg \(⋮\)11.
b. Đề bài sai
Chúc bạn học tốt!