Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(8^5+2^{11}=\left(2^3\right)^5+2^{11}=2^{15}+2^{11}=2^{11}\left(2^4+1\right)=2^{22}\cdot17\)
17 chia hết 17 nên 222 . 17 chia hết 17 => dpcm
b/ \(19^{19}+69^{19}=\left(19+69\right)\left(19^{19-1}-19^{19-2}\cdot69+19^{19-3}\cdot69^2-19^{19-4}\cdot69^3+...+69^{19-1}\right)\)
\(=88\cdot\left(19^{18}-19^{17}\cdot69+...+69^{18}\right)\)
88 chia hết 44 nên \(88\cdot\left(19^{18}-19^{17}\cdot69+...+69^{18}\right)\)chia hết 44 => dpcm
Đặt \(\overline{abc}=11m+k;\overline{xyz}=11n+k\left(k\in N,k< 11\right)\)
Khi đó ta có: \(\overline{abcxyz}=1000.\overline{abc}+\overline{xyz}=1000\left(11m+k\right)+11n+k\)
\(=11000m+11n+1001k\)
Biểu thức trên chia hết cho 11 với mọi m, n, k.
Vậy ....
Ta có:
\(3^{4n+1}=3.81^n\text{≡}3\left(mod10\right)\)
\(\Rightarrow3^{4n+1}=10k+3\)
\(\Rightarrow2^{3^{4n+1}}=2^{10k+3}=8.1024^k\text{≡}8\left(mod11\right)\left(1\right)\)
Ta lại có:
\(2^{4n+1}=2.16^n\text{≡}2\left(mod5\right)\)
\(\Rightarrow2^{4n+1}=5a+2\)
\(\Rightarrow3^{2^{4n+1}}=3^{5a+2}=9.243^a\text{≡}9\left(mod11\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow3^{2^{4n+1}}+2^{3^{4n+1}}+5\text{≡}9+8+5\text{≡}22\text{≡}0\left(mod11\right)\)
Bài 1:
cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3
Giả sử a và b đồng thời đều không chia hết cho 3
Vì a không chia hết cho 3 nên ⇒ a2 : 3 dư 1
vì b không chia hết cho b nên ⇒ b2 : 3 dư 1
⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)
Vậy a; b không thể đồng thời không chia hết cho ba
Giả sử a ⋮ 3; b không chia hết cho 3
a ⋮ 3 ⇒ a 2 ⋮ 3
Mà a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết)
Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra
Từ những lập luận trên ta có:
a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)
\(\text{Ta có: }14^{8^{2004}}+2\equiv5^{2004}+2\left(\text{mod 11}\right)\)
\(\equiv\left(5^{15}\right)^{133}.5^9+2\left(\text{mod 11}\right)\)
\(\equiv1^{133}.5^9+2\left(\text{mod 11}\right)\)
\(\equiv9+2\left(\text{mod 11}\right)\)
\(\equiv0\left(\text{mod 11}\right)\)
Vậy .... chia hết cho 11