K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

\(\left(2006n+2\right)\left(2008n+1\right)\)

\(=2\left(1003n+1\right)\left(2008n+1\right)\)\(⋮\)\(2\)(đpcm)

p/s: chúc bạn học tốt

Ta có:

\(1003x+2y=2008\Rightarrow1003x=2008-2y=2\left(1004-y\right)\)

Ta lại có:

\(2\left(1004-y\right)⋮2\Rightarrow1003x⋮2\Rightarrow x⋮2\)(đpcm)

22 tháng 5 2016

Câu 2 nè:

Ta có:2006 = 2.17.59

Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006

Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.

Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59

suy ra n(n+1)...(n+9) chia hết cho 2006

* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.

- Đặt S = \(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{59}\)

\(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{58}=\frac{A}{B}\)(trong đó B ko chia hết 59)

\(\Rightarrow S=\frac{A}{B}+\frac{1}{59}=\frac{\left(59A+B\right)}{59B}=\frac{p}{q}\)

hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)

Do B ko chia hết 59 suy ra q chia hết 59.

- Đặt \(\frac{1}{50}+\frac{1}{52}+...+\frac{1}{58}=\frac{C}{D}\) ta cũng có D ko chia hết cho 17

Chứng minh tương tự suy ra q chia hết cho 59, 17, 2

=>đpcm

22 tháng 5 2016

nếu đề có thêm điều kiện n nhỏ nhất thì làm như vậy còn ko thì chỉ chép đến chỗ dấu       "'*"  thui

25 tháng 4 2016

A           xp=x+x2+x^3+x^4+..................+x^2016

=>xp-p= x^2016-1 ban nhe

B        ap dung dau hieu chia het cho 3 la tong chu so chia het cho 3

Bài 1: 

\(A=\left(n^2+3n+1-1\right)\left(n^2+3n+1+1\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Vì n;n+1;n+2;n+3 là bốn số liên tiếp

nên \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮4!=24\)

24 tháng 8 2019

a.Vì x,y là số nguyên dương

     => 1003 và 2y cũng là số nguyên dương                              

 Vì 2008 là số chẵn 

 mà 2y cũng là số chẵn

=> 1003x là số chẵn

Vì 1003 là số lẻ 

mà 1003x là số chẵn

=> x là số chẵn 

=> x chia hết cho 2 (đpcm)

                       Vậy ta có đpcm

15 tháng 4 2018

a. Vì n thuộc N* nên ta xét 2 trường hợp sau:

+ Nếu n là số lẻ => n+1 là số chẵn

                          => n+1 chia hết cho 2

                          => (n+1)(3n+2)  chia hết cho 2

                          => (n+1)(3n+2) là một số chẵn

+ Nếu n là số chẵn => 3n là số chẵn

                               => 3n+2 là một số chẵn

                               => 3n+2 chia hết cho 2

                               =>(n+1)(3n+2)  chia hết cho 2

                               => (n+1)(3n+2) là một số chẵn

Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn

b, Vì 6x+11y chia hết cho 31

=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)

=> 6x+42y chia hết cho 31

=>6.(x + 7y) chia hết cho 31

=>x+7y chia hết cho 31 (Vì (6,31) = 1)

Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31