K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

câu này mk nghỉ là \(A=\dfrac{xy}{4x^2+y^2}\) mới đúng

nếu đúng vậy thì lời giải

ta có : \(A=\dfrac{xy}{4x^2+y^2}=\dfrac{xy}{5xy-y^2+y^2}=\dfrac{xy}{5xy}=\dfrac{1}{5}\)

AH
Akai Haruma
Giáo viên
26 tháng 11 2017

Lời giải:

Ta có \(4x^2-5xy+y^2=0\)

\(\Leftrightarrow (4x-y)(x-y)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-y=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=y\\x=y\end{matrix}\right.\)

Vì \(2x>y>0\Rightarrow \) nếu \(4x=y\Leftrightarrow 2x>4x>0\) (vô lý)

Do đó \(x=y\). Thay vào biểu thức A

\(A=\frac{xy}{4x^2-y^2}=\frac{x^2}{4x^2-x^2}=\frac{1}{3}\)

10 tháng 11 2018

Hỏi đáp Toán

26 tháng 11 2017

Cần tìm ra gt của A là số nguyên à bạn?

21 tháng 6 2016

Nhầm =1/3

23 tháng 6 2016

Vì 2x>y>0 => 4x2>y2 => 4x2-y2\(\ne\)0

=>Giá trị của phân thức M luôn xác định

Từ 4x2+y2=5xy => 4x2+y2-5xy=0 => (4x-y)(x-y)=0

Vì 2x>y>0 =>2x-y>0 =>4x-y>0

=>y-y=0 =>x=y

\(M=\frac{xy}{4x^2-y^2}=\frac{x^2}{3x^2}=\frac{1}{3}\)

30 tháng 4 2019

Từ gt \(4x^2+y^2=5xy\)

\(\Leftrightarrow4x^2-4xy+y^2-xy=0\)

\(\Leftrightarrow4x\left(x-y\right)+y\left(y-x\right)=0\)

\(\Leftrightarrow4x\left(x-y\right)-y\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(4x-y\right)=0\)

\(2x>y>0\Rightarrow4x>y\Leftrightarrow4x-y>0\)

\(\Rightarrow x-y=0\Leftrightarrow x=y\)

Thay vào M:

\(M=\frac{xy}{4x^2-y^2}=\frac{x^2}{4x^2-x^2}=\frac{x^2}{3x^2}=\frac{1}{3}\)

30 tháng 4 2019

ta có :

4x2+y2=5xy

⇔ 4x2+y2-5xy=0

⇔ 4x2 - 4xy + y2-xy=0

⇔4x(x-y) - y(x-y) = 0

⇔ (x - y)(4x-y)=0

vì 2x > y > 0 nên 4x-y>0

⇒ x-y=0 ⇒ x = y

⇒M= \(\frac{xy}{4x^2-y^2}\)=\(\frac{x^2}{4x^2-x^2}=\frac{x^2}{3x^2}=\frac{1}{3}\)

vậy M = \(\frac{1}{3}\)

20 tháng 6 2018

\(\text{Có: }4x^2+y^2=5xy\\ \Leftrightarrow4x^2+y^2-5xy=0\\ \Leftrightarrow4x^2-4xy-xy+y^2=0\\ \Leftrightarrow4x\left(x-y\right)-y\left(x-y\right)=0\\ \Leftrightarrow\left(4x-y\right)\left(x-y\right)=0\\ \Leftrightarrow x-y=0\left(4x-y\ne0\right)\\ \Leftrightarrow x=y\)

\(\Rightarrow\dfrac{xy}{4x^2-y^2}=\dfrac{x^2}{4x^2-x^2}=\dfrac{x^2}{3x^2}=\dfrac{1}{3}\)