1) Tìm Min, Max
a) \(A=x^2+6x+1\)
b) \(2x^2+10x-5\)
c) \(x^2-5x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)
\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)
\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max
2.
\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)
\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)
\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)
\(E_{min}=-1\) khi \(x=0\)
\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)
\(G_{min}=-2\) khi \(x=2\)
B=(x^2-6x+9)-8
B=(x-3)^2-8
Vì (x-3)^2\(\ge0\forall x\)
-> (x-3)-8\(\ge-8\forall x\)
Dấu = xảy ra<=> x-3=0<=>x=3
C=2x^2-10x+1
C=2(x^2-5x+6,25)-11,5
C= 2(x-2,5)^2-11,5
Vì 2(x-2,5)^2\(\ge0\forall x\)
->2(x-2,5)^2-11,5\(\ge-11,5\forall x\)
Dấu = xẩy ra<=> x-2,5=0<=>x=2,5
Vậy Min C là -11,5 <=> x=2,5
D= x^2+10-25
D=(x^2+10+25)-50
D=(x+5)^2-50
Vì (x-5)^2 \(\ge0\forall x\)
-> (x-5)^2-50\(\ge-50\forall x\)
Dấu = xẩy ra <=> x-5=0<=>x=5
Vậy Min D là -50 <=>x=5
Tìm Max
B= 5x-x^2
B=-(x^2-5x+25/4)-25/4
B= -(x-5/2)^2-25/4
Vì -(x-5/2)^2\(\le0\forall x\)
-> -(x-5/2)^2-25/4\(\le\)-25/4
Dấu = xẩy ra <=> x-5/2=0<=>x=5/2
Vậy Max B là -25/4 <=> x=5/2
C=-x^2-6x+10
C=-(x^2+6x+9)+19
C= -(x+3)^2+19
Vì -(x+3)^2\(\le\)0
=> -(x+3)^2+19\(\le\)19
Dấu = xảy ra <=> x+3=0<=>x=-3
D= -2x^x+8x+12
D=-2(x^2-4x+4)+20
D=-2(x-2)^2 +20
Vì -2(x-2)^2\(\le\)0
=> -2(x-2)^2+20\(\le\)20
Dấu= xẩy ra<=> x-2=0<=>x=2
Vậy Max D là 20<=>x-2
\(1,\\ a,=-35x^5y^4z\\ b,=6x^2-30x-6x^2-3x=-33x\\ c,=x^3-9x^2-2x^2+18x-x+9=x^3-11x^2+17x+9\\ 2,\\ A\left(x\right)+B\left(x\right)=10-2x+4x^3-5x^2-10x^3-5x+6x^2-20\\ =-6x^3+x^2-7x-10\\ A\left(x\right)-B\left(x\right)=10-2x+4x^3-5x^2+10x^3+5x-6x^2+20\\ =14x^3-11x^2+3x+30\\ 3,\\ a,M\left(x\right)=5x+20=0\\ \Leftrightarrow x=-4\\ b,N\left(x\right)=100x^2-49=0\\ \Leftrightarrow\left(10x-7\right)\left(10x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{10}\\x=-\dfrac{7}{10}\end{matrix}\right.\\ c,P\left(x\right)=3x-15=0\\ \Leftrightarrow x=5\)
Bài 1;
a)\(5x^3yz.\left(-7x^2y^3\right)=-35.x^5y^4z\)
b)\(6x\left(x-5\right)-x\left(6x+3\right)=6x^2-30x-6x^2-3x=-33x\)
c) \(\left(x-9\right)\left(x^2-2x-1\right)=x^3-2x^2-x-9x^2+18x+9=x^3-11x^2+17x+9\)
a.
\(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)
\(6x^2+21x-2x-7-6x^2+5x-6x+5=16\)
\(\left(6x^2-6x^2\right)+\left(21x-2x+5x-6x\right)-\left(7-5\right)=16\)
\(18x-2=16\)
\(18x=16+2\)
\(18x=18\)
\(x=\frac{18}{18}\)
\(x=1\)
b.
\(\left(10x+9\right)x-\left(5x-1\right)\left(2x+3\right)=8\)
\(10x^2+9x-10x^2-15x+2x+3=8\)
\(\left(10x^2-10x^2\right)-\left(15x-9x-2x\right)+3=8\)
\(-4x=8-3\)
\(-4x=5\)
\(x=-\frac{5}{4}\)
c.
\(\left(3x-5\right)\left(7-5x\right)+\left(5x+2\right)\left(3x-2\right)-2=0\)
\(21x-15x^2-35+25x+15x^2-10x+6x-4-2=0\)
\(\left(15x^2-15x^2\right)+\left(25x+21x-10x+6x\right)-\left(35+4+2\right)=0\)
\(42x=41\)
\(x=\frac{41}{42}\)
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
a) \(A=x^2+6x+1=\left(x^2+2\cdot x\cdot3+3^2\right)-8\)
\(=\left(x+3\right)^2-8\)
Vì \(\left(x+3\right)^2\ge0\forall x\)
=> \(\left(x+3\right)^2-8\ge-8\forall x\)
Dấu " = " xảy ra khi và chỉ khi (x + 3)2 = 0 => x = -3
Vậy Amin = -8 khi x = -3
b) \(2x^2+10x-5=2\left(x^2+5x-\frac{5}{2}\right)\)
\(=2\left[x^2+2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2\right]-\frac{35}{2}\)
\(=2\left(x+\frac{5}{2}\right)^2-\frac{35}{2}\)
Vì (x + 5/2)2 \(\ge0\forall x\)
=> \(2\left(x+\frac{5}{2}\right)^2-\frac{35}{2}\ge-\frac{35}{2}\forall x\)
Dấu " = " xảy ra khi và chỉ khi (x + 5/2)2 = 0 => x = -5/2
Vậy Bmin = -35/2 khi x = -5/2
c) \(x^2-5x=\left[x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2\right]-\frac{25}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\)
Vì (x - 5/2)2 \(\ge\)0 với mọi x
=> \(\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\)
Dấu " = " xảy ra khi và chỉ khi (x - 5/2)2 = 0 => x = 5/2
Vậy Cmin = -25/4 khi x = 5/2