K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2019

a) VT = (a - 1)(a - 2) + (a - 3)(a + 4) - (2a2 + 5a - 34)

         = a2 - 2a - a + 2 + a2 + 4a - 3a - 12  - 2a2 - 5a + 34

       = (a2 + a2 - 2a2) - (2a + a - 4a + 3a + 5a) + (2 - 12 + 34)

        =  -7a + 24

=> VT = VP

=> đpcm

b) VT = (a - b)(a2 + ab + b2) - (a + b)(a2 - ab + b2)

         = (a3 - b3) - (a3 + b3)

         = a3 - b3 - a3 - b3

           = -2b

=> VT = VP

=> Đpcm

Câu b bn xem đề lại (a + b)(a2 - ab + b2) ko phải là (a + b)(a2 - ab - b2)

4 tháng 7 2021

\(1.\\ A=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\\ =\left|2+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\\ =2+\sqrt{3}+2-\sqrt{3}=4\)

\(2.\\a.\\ P=3x-\sqrt{\left(x-5\right)^2}=3x-\left|x-5\right|\\ b.\\ x=2\Rightarrow P=3\)

\(3.\\ M=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\left|x-1\right|}{x-1}\)

\(\cdot x>1\Rightarrow M=1\\ \cdot x=1\Rightarrow M=0\\\cdot x< 1\Rightarrow M=-1\)

4 tháng 7 2021

B1.

Ta có:A\(=\sqrt{3+4\sqrt{3}+4}+\sqrt{3-4\sqrt{3}+4}\)

            \(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)

           \(=\sqrt{3}+2+\sqrt{3}-2=2\sqrt{3}\)

=a^3+b^3+3a^2b+3ab^2-a^3+3a^2b-3ab^2+b^3-2b^3

=6a^2b

18 tháng 6 2023

\(\left(a+b\right)^3-\left(a-b\right)^3-2b^3\\ =a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)-2b^3\\ =a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-2b^3\\ =6a^2b\)

18 tháng 10 2019

(a + b)3 – (a – b)3 – 2b3

= (a3 + 3a2b + 3ab2 + b3) – (a3 – 3a2b + 3ab2 – b3) – 2b3 (Áp dụng HĐT (4) và (5))

= a3 + 3a2b + 3ab2 + b3 – a3 + 3a2b – 3ab2 + b3 – 2b3

= (a3 – a3) + (3a2b + 3a2b) + (3ab2 – 3ab2) + (b3 + b3 – 2b3)

= 6a2b

8 tháng 6 2018

c: Ta có: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)

\(=a^4-2a^3b+2ab^3-b^4\)

\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)

\(=\left(a-b\right)^3\cdot\left(a+b\right)\)

2 tháng 9 2020

câu hỏi của bạn là j vậy.

NV
16 tháng 11 2021

\(\Leftrightarrow\dfrac{a^4+b^4+4a^2b^2}{a^2b^2}\ge\dfrac{3\left(a^2+b^2\right)}{ab}\)

\(\Leftrightarrow a^4+b^4+4a^2b^2\ge3ab\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a^4+b^4-2a^2b^2\right)+6a^2b^2-3ab\left(a^2+b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2-3ab\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)^2-3ab\left(a-b\right)^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+b^2-ab\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left[\left(a-\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\right]\ge0\) (luôn đúng)