Giair phương trình \(\sqrt{2016-x}+\sqrt{x-2014}=x^2-4030x+4060227\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2016-x}+\sqrt{x-2014}=x^2-4030x+4060227\) (*)
Điều kiện : \(2014\le x\le2016\)
Áp dụng tính chất : \(\left(a+b\right)^2\)\(\le\)\(\left(a^2+b^2\right)\)với \(\forall a,b\)
Ta có:
\(\sqrt{x-2016}+\sqrt{x-2014}^2\) \(\le\)\(2\left(2016-x+x-2014\right)\)\(=4\)
\(\Rightarrow\sqrt{\left(2016-x\right)+}\sqrt{\left(x-2014\right)\le2}\)\(\left(1\right)\)
Mặt khác: \(x^2-4030x+4060227=\left(x-2015\right)^2+2\left(2\right)\)
Từ (1) và (2) ta có:
\(\Rightarrow\)(*) \(\Leftrightarrow\sqrt{2016-x}+\sqrt{x-2014}=\left(x-2015\right)^2+2=2\)
\(\Leftrightarrow\left(x-2015\right)^2=0\)
\(\Rightarrow x=2015\) ( Thỏa mãn điều kiện)
Vậy phương trình có 1 nghiệm duy nhất là x=2015
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-1}+\sqrt{x+3}-\sqrt{\left(x-2\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}-1\right)-\sqrt{x+3}\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{x+3}\right)\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{x+3}\\\sqrt{x-2}=1\end{matrix}\right.\)
\(\Leftrightarrow x=3\)
b. ĐK \(\hept{\begin{cases}x-2\ge0\\y+2014\ge0\\z-2015\ge o\end{cases}\Rightarrow\hept{\begin{cases}x\ge2\\y\ge-2014\\z\ge2015\end{cases}}}\)
Ta có \(\sqrt{x-2}+\sqrt{y+2014}+\sqrt{z-2015}=\frac{1}{2}\left(x+y+z\right)\)
Đặt \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{y+2014}=b\ge0\\\sqrt{z-2015}=c\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x-2=a^2\\y+2014=b^2\\z-2015=c^2\end{cases}\Rightarrow x+y+z}=a^2+b^2+c^2+3\)
Pt \(\Leftrightarrow a+b+c=\frac{1}{2}\left(a^2+b^2+c^2+3\right)\Leftrightarrow a^2+b^2+c^2+3=2a+2b+2c\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\)\(\Leftrightarrow a=b=c=1\)
\(\Rightarrow\hept{\begin{cases}x-2=1\\y+2014=1\\z-2015=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-2013\\z=2016\end{cases}\left(tm\right)}}\)
Vậy \(x=3;y=-2013;z=2016\)
ĐKXĐ: \(\left[{}\begin{matrix}x< -1\\x>1\end{matrix}\right.\)
- Với \(x< -1\Rightarrow VT< 0< 2\sqrt{2}\Rightarrow\) ptvn
- Với \(x>1\), bình phương 2 vế:
\(x^2+\dfrac{x^2}{x^2-1}+\dfrac{2x^2}{\sqrt{x^2-1}}=8\)
\(\Leftrightarrow\dfrac{x^4}{x^2-1}+2\sqrt{\dfrac{x^4}{x^2-1}}-8=0\)
Đặt \(\sqrt{\dfrac{x^4}{x^2-1}}=t>0\)
\(\Rightarrow t^2+2t-8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-4\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\dfrac{x^4}{x^2-1}=4\Rightarrow x^4-4x^2+4=0\)
\(\Rightarrow x^2=2\Rightarrow x=\sqrt{2}\)
ĐKXĐ: ...
\(\sqrt{x^2-x-30}-3\sqrt{x+5}-2\sqrt{x-6}=-6\)
\(\Leftrightarrow\sqrt{\left(x+5\right)\left(x-6\right)}-3\sqrt{x+5}-2\sqrt{x-6}=-6\)(*)
đặt \(\sqrt{x+5}=a\ge0;\sqrt{x-6}=b\ge0\)
\(\text{pt(*)}\Leftrightarrow ab-3a-2b=-6\\ \Leftrightarrow\Leftrightarrow ab-3a-2b+6=0\\ \Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\\ \Leftrightarrow\left(a-2\right)\left(b-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=2\\\sqrt{x-6}=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+5=4\\x-6=9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=15\left(tm\right)\end{matrix}\right.\)
\(a,Đk:x\ge0\\ PT\Leftrightarrow4x-8\sqrt{x}-7\sqrt{x}+14=0\\ \Leftrightarrow\left(\sqrt{x}-2\right)\left(4\sqrt{x}-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{49}{4}\end{matrix}\right.\left(tm\right)\\ b,ĐK:x\ge0\\ PT\Leftrightarrow\sqrt{x+1}-\sqrt{3x}+1-4x^2=0\\ \Leftrightarrow\dfrac{1-2x}{\sqrt{x+1}+\sqrt{3x}}+\left(1-2x\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(1-2x\right)\left(\dfrac{1}{\sqrt{x+1}+\sqrt{3x}}+2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\\dfrac{1}{\sqrt{x+1}+\sqrt{3x}}+2x+1=0\left(1\right)\end{matrix}\right.\)
Với \(x\ge0\Leftrightarrow\left(1\right)>0\)
Vậy PT có nghiệm \(x=\dfrac{1}{2}\)