K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2022

a) y × 2/5 + y × 3/5 = 5/7 

y x ( 2/5 + 3/5) = 5/7

y x 5/5 = 5/7

y x 1 = 5/7

y = 5/7 : 1

y = 5/7

 

b) y × 7/2 - y × 3/2 = 3/4

y x ( 7/2 - 3/2) = 3/4

y x 4/2 = 3/4

y x 2 = 3/4

y = 3/4 : 2

y = 3/4 x 1/2

y = 3/8

20 tháng 5 2022

`a,yxx(2/5+3/5)=5/7`

`y xx1=5/7`

`y=5/7:1`

`y=5/7`

`b,y xx(7/2-3/2)=3/4`

`y xx2=3/4`

`y =3/4:2`

`y=3/2`

a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/3 = y/4 = x/3 + y/4 = 28/7 = 4

=> x = 4 × 3 = 12

=> y = 4 × 4 = 16

Vậy x = 12, y = 16

B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1

=> x = -1 × 2 = -2

=> y = -1 × -5 = 5

Vậy x = -2, y = 5

C) làm tương tự như bài a, b

9 tháng 12 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2

Do đó: x=16; y=24; z=30

22 tháng 8 2023

Bài 5 :

a) \(\dfrac{y}{4}=\dfrac{9}{y}\)

\(\Rightarrow y^2=36\left(y\ne0\right)\)

\(\Rightarrow y=\pm6\)

b) \(\dfrac{y+7}{20}=\dfrac{5}{y+7}\left(y\ne-7\right)\)

\(\Rightarrow\left(y+7\right)^2=100=10^2\)

\(\Rightarrow\left[{}\begin{matrix}y+7=10\\y+7=-10\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=3\\y=-17\end{matrix}\right.\)

c) \(\dfrac{4-5y}{3}=\dfrac{y+2}{5}\)

\(\Rightarrow5\left(4-5y\right)=3\left(y+2\right)\)

\(\Rightarrow20-25y=3y+6\)

\(\Rightarrow28y=14\)

\(\Rightarrow y=\dfrac{14}{28}=\dfrac{1}{2}\)

22 tháng 8 2023

Bài 4 :

\(\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{c}{10}\)

\(\Rightarrow\dfrac{2a}{10}=\dfrac{3b}{21}=\dfrac{4c}{40}=\dfrac{2a+3b-4c}{10+21-40}=\dfrac{81}{-9}=-9\)

\(\Rightarrow\left\{{}\begin{matrix}a=-9.5=-45\\b=-9.7=-63\\c=-9.10=-90\end{matrix}\right.\)

3 tháng 4 2022

`y+7/2xxy+yxx3/5=102`

`y+7/2xxyxx1xx+yxx3/5=102`

`yxx(7/2+1+3/5)=102`

`yxx5,1=102`

`y=102:5,1`

`y=20`

Vậy..

`@An`

Bài 4:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=b\cdot k;c=d\cdot k\)

\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)

\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)

Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)

Bài 2:

a: x:y=4:7

=>\(\dfrac{x}{4}=\dfrac{y}{7}\)

mà x+y=44

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)

=>\(x=4\cdot4=16;y=4\cdot7=28\)

b: \(\dfrac{x}{2}=\dfrac{y}{5}\)

mà x+y=28

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)

=>\(x=4\cdot2=8;y=4\cdot5=20\)

Bài 3:

Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)

=>x=5k; y=4k; z=3k

\(M=\dfrac{x+2y-3z}{x-2y+3z}\)

\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)

\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)

23 tháng 1

bài 1 đâu hả bạn 

 

5 tháng 12 2019

ta có x + y = 7 => x = 7 - y => 5x = 5.(7 - y) = 35 - 5y

\(\frac{x-1}{y+2}=\frac{-3}{5}\)

\(5.\left(x-1\right)=-3.\left(y+2\right)\)

\(5x-5=-3y-6\)

35 - 5y - 5 = -3y - 6

35 - 5 + 6 = -3y + 5y

36 = 2y

Vậy y = 18

=> x = 7 - 18 = -11

12 tháng 5 2023

cặc

 

15 tháng 8 2023

a, y \(\times\) \(\dfrac{4}{3}\) = \(\dfrac{16}{9}\)

    y         =    \(\dfrac{16}{9}\) : \(\dfrac{4}{3}\)

    y         = \(\dfrac{4}{3}\)

b, ( y - \(\dfrac{1}{2}\)) + 0,5 = \(\dfrac{3}{4}\)

    y - 0,5 + 0,5 = \(\dfrac{3}{4}\)

   y                   = \(\dfrac{3}{4}\)

c, \(\dfrac{4}{5}-\dfrac{2}{5}y\) = 0,2

   0,8 - 0,4y = 0,2

           0,4y = 0,8 - 0,2

           0,4y  = 0,6

               y = 1,5

   

15 tháng 8 2023

d, (y + \(\dfrac{3}{4}\)\(\times\) \(\dfrac{5}{7}\) = \(\dfrac{10}{9}\)

    y + \(\dfrac{3}{4}\)           = \(\dfrac{10}{9}\) : \(\dfrac{5}{7}\)

   y + \(\dfrac{3}{4}\)            = \(\dfrac{14}{9}\)

y                    = \(\dfrac{14}{9}\) - \(\dfrac{3}{4}\)

 y                   =   \(\dfrac{29}{36}\)

e, y : \(\dfrac{5}{4}\)         = \(\dfrac{9}{5}\)  + \(\dfrac{1}{2}\)

   y : \(\dfrac{5}{4}\)         =   \(\dfrac{23}{10}\)

  y                =      \(\dfrac{23}{10}\)

  y               =   \(\dfrac{23}{8}\)

f, y \(\times\) \(\dfrac{1}{2}\) + \(\dfrac{3}{2}\) \(\times\) y   = \(\dfrac{4}{5}\)

   y \(\times\) ( \(\dfrac{1}{2}+\dfrac{3}{2}\))      =  \(\dfrac{4}{5}\)

   2y                       = \(\dfrac{4}{5}\)

    y                        = \(\dfrac{2}{5}\)