K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2015

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^2b}{c^2d}=\frac{2b^3}{2d^3}=\frac{a^3+2b^3}{c^3+2d^3}\)

=>đpcm

23 tháng 4 2020

Uầy đăng đề cũng thiếu, rồi ai làm cho baybe :)))?

NV
24 tháng 4 2020

\(\frac{a^4}{a^3+2b^3}=a-\frac{2ab^3}{a^3+b^3+b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{a^3.b^3.b^3}}=a-\frac{2}{3}b\)

Tương tự ta có

\(\frac{b^4}{b^3+2c^3}\ge b-\frac{2}{3}c\) ; \(\frac{c^4}{c^3+2d^3}\ge c-\frac{2}{3}d\) ; \(\frac{d^4}{d^3+2a^3}\ge d-\frac{2}{3}a\)

Cộng vế với vế:

\(VT\ge a+b+c+d-\frac{2}{3}\left(a+b+c+d\right)=\frac{a+b+c+d}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

24 tháng 4 2020

cảm ơn bạn nhé!

3 tháng 10 2020

ta có : ab=cd⇔ad=bc⇔4ad=4bc⇔2ad+2ad=2bc+2bcab=cd⇔ad=bc⇔4ad=4bc⇔2ad+2ad=2bc+2bc

⇔2ad−2bc=2bc−2ad⇔ac+2ad−2bc−4bd=ac+2bc−2ad−4bd⇔2ad−2bc=2bc−2ad⇔ac+2ad−2bc−4bd=ac+2bc−2ad−4bd

⇔(c+2d)(a−2b)=(a+2b)(c−2d)⇔a+2bc+2d=a−2bc−2d(đpcm) 

3 tháng 10 2020

Bạn ơi! Phải chứng minh \(\frac{a}{b}=\frac{c}{d}\) chứ!

6 tháng 11 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}\Rightarrow\frac{b}{a}+1=\frac{d}{c}+1\Leftrightarrow\frac{a+b}{a}=\frac{c+d}{c}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

6 tháng 11 2016

từ \(\frac{a+b}{a}=\frac{c+d}{c}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

^-^

22 tháng 8 2019

Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{5a}{5c}=\frac{2b}{2d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{5a}{5c}=\frac{2b}{2d}=\frac{5a+2b}{5c+2d}=\frac{5a-2b}{5c-2d}\)

                 \(\Rightarrow\frac{5a+2b}{5a-2b}=\frac{5c+2d}{5c-2d}\left(đpcm\right)\)

ta có:

\(\frac{5a+2b}{5a-2b}=\frac{5c+2d}{5c-2d}\Rightarrow\frac{5a+2b}{5c+2d}=\frac{5a-2b}{5c-2d}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{5a}{5c}=\frac{2b}{2d}=\frac{5a-2b}{5c-2d}=\frac{5a+2b}{5c+2d}\)(đpcm)