K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Thay m=2 vào phương trình \(x^2+2\left(m-1\right)x-4m=0\), ta được:

\(x^2+2\cdot\left(2-1\right)x-4\cdot2=0\)

\(\Leftrightarrow x^2+2x-8=0\)(1)

\(\Delta=b^2-4ac=2^2-4\cdot1\cdot\left(-8\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2-\sqrt{36}}{2\cdot1}=\dfrac{-2-6}{2}=-4\\x_2=\dfrac{-2+\sqrt{36}}{2\cdot1}=\dfrac{-2+6}{2}=2\end{matrix}\right.\)

Vậy: Khi m=2 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt là \(x_1=-4;x_2=2\)

b) Ta có: \(x^2+2\left(m-1\right)x-4m=0\)

\(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4\right)\)

\(\Leftrightarrow\Delta=\left(2m-2\right)^2+16>0\forall m\)

\(\forall m\) thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) luôn có hai nghiệm phân biệt là: 

\(\left\{{}\begin{matrix}x_1=\dfrac{-\left(2m-2\right)-\sqrt{\Delta}}{2}\\x_2=\dfrac{-\left(2m-2\right)+\sqrt{\Delta}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}\\x_2=\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}\end{matrix}\right.\)

Để x1 và x2 là hai số đối nhau thì \(x_1+x_2=0\)

\(\Leftrightarrow\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}+\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}=0\)

\(\Leftrightarrow-2m+2-2m+2=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow-4m=-4\)

hay m=1

Vậy: Khi m=1 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 và x2 là hai số đối nhau

31 tháng 1 2021

a, Với m = 2 (1)<=>x^2+2x-8=0 rồi tính ra thôi

b, Để PT có 2 nghiệm PB thì 

Δ=[2(m−1)]^2−4⋅1⋅(−4)Δ=[2(m−1)]2−4⋅1⋅(−4)

⇔Δ=(2m−2)^2+16>0∀m

Vì x1 và x2 là 2 số đối nhau nên x1+x2=0 <=> -2(m-1) = 0 <=> m=1

Vậy để PT có 2 nghiệm pbiet đối nhau thì m = 1 

1 tháng 5 2017

mày ó

c cứt à????<3

a. vs m=-1 ,thay vào pt(1) ,ta đc :

x^2 -(-1+2)x +2.(-1) =0

<=>x^2 -x-2 =0

Có : đenta = (-1)^2 -4.(-2) =9 >0

=> căn đenta =căn 9 =3

=> X1 =2 ; X2=-1

Vậy pt (1) có tập nghiệm S={-1;2}

14 tháng 5 2021

a, Đặt \(x^2=t\left(t\ge0\right)\)

Khi đó \(PT< =>t^1+4t-5=0\)

\(< =>t^2-1+4t-4=0\)

\(< =>\left(t-1\right)\left(t+1\right)+4\left(t-1\right)=0\)

\(< =>\left(t-1\right)\left(t+5\right)=0\)

\(< =>\orbr{\begin{cases}t=1\left(tm\right)\\t=-5\left(loai\right)\end{cases}}\)

\(< =>x^2=1< =>\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

Vậy ...

14 tháng 5 2021

Thay m = 2 vào , ta có :

\(PT< =>x^2-2\left(2+1\right)x+2^2+3.2-4=0\)

\(< =>x^2-6x+6=0\)

\(< =>\left(x^2-6x+9\right)-\sqrt{3}^2=0\)

\(< =>\left(x-3-\sqrt{3}\right)\left(x-3+\sqrt{3}\right)=0\)

\(< =>\orbr{\begin{cases}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{cases}}\)

19 tháng 2 2021

\(3\left(x-2\right)+4=5x-2\left(x-1\right)\\ \Leftrightarrow3x-6+4=5x-2x+2\\ \Leftrightarrow0x=4\left(vôlý\right)\)

Vậy pt vô nghiệm

 

\(2\left(x-2\right)-3\left(1-2x\right)=5\\ \Leftrightarrow2x-4-3+6x=5\\ \Leftrightarrow8x=12\\ \Leftrightarrow x=\dfrac{3}{2}\)

18 tháng 3 2020

- Ta có: \(\left(x^2-1\right).\left(x+2\right).\left(x-3\right)=\left(x-1\right).\left(x^2-4\right).\left(x+5\right)\)

      \(\Leftrightarrow\left(x-1\right).\left(x+1\right).\left(x+2\right).\left(x-3\right)=\left(x-1\right).\left(x-2\right).\left(x+2\right).\left(x+5\right)\)

      \(\Leftrightarrow\left(x-1\right).\left(x+1\right).\left(x+2\right).\left(x-3\right)-\left(x-1\right).\left(x-2\right).\left(x+2\right).\left(x+5\right)=0\)

      \(\Leftrightarrow\left(x-1\right).\left(x+2\right).\left[\left(x+1\right).\left(x-3\right)-\left(x-2\right).\left(x+5\right)\right]=0\)

      \(\Leftrightarrow\left(x-1\right).\left(x+2\right).\left[\left(x^2-2x-3\right)-\left(x^2+3x-10\right)\right]=0\)

      \(\Leftrightarrow\left(x-1\right).\left(x+2\right).\left(x^2-2x-3-x^2-3x+10\right)=0\)

      \(\Leftrightarrow\left(x-1\right).\left(x+2\right).\left(-5x+7\right)=0\)

\(x-1=0\)\(\Leftrightarrow\)\(x=1\left(TM\right)\)

\(x+2=0\)\(\Leftrightarrow\)\(x=-2\left(TM\right)\)

\(-5x+7=0\)\(\Leftrightarrow\)\(-5x=-7\)\(\Leftrightarrow\)\(x=\frac{7}{5}\left(TM\right)\)

Vậy \(S=\left\{-2,1,\frac{7}{5}\right\}\)

19 tháng 5 2016

x2(x+2)2+4x2=12(x+2)2

=>x2(x+2)2+4x2-12(x+2)2=0

VT=(x2-2x-4)(x2+6x+12)

pt trở thành (x2-2x-4)(x2+6x+12)=0

=>x2-2x-4=0 hoặc x2+6x+12=0

Th1:x2-2x-4=0

denta:(-2)2-(-4(1.4))=20

x1:(2+\(\sqrt{20}\)):2=1+\(\sqrt{5}\)

x2:(2-\(\sqrt{20}\)):2=\(\sqrt{5}\)+1

Th2:x2+6x+12=0

denta:62-4(1.12)=-12

=>\(\Delta< 0\)

=>vô nghiệm

vậy pt có nghiệm là 1-\(\sqrt{5}\)và \(\sqrt{5}\)+1

9 tháng 1 2019

2( x - 1 ) - 5 = 3( 5 - 3x)

2x - 2 - 5 = 15 - 9x

2x - 7 = 15 - 9x

2x + 9x = 15 + 7

11x = 22

x = 2

Vậy x = 2 

10 tháng 1 2019

\(2\left(x-1\right)-5=3\left(5-3x\right)\)

\(\Leftrightarrow2x-2-5=15-9x\)

\(\Leftrightarrow2x-\left(2+5\right)=15-9x\)

\(\Leftrightarrow2x-7=15-9x\)

\(\Leftrightarrow2x+9x=15+7\)

\(\Leftrightarrow11x=22\)

\(\Leftrightarrow x=22\div11\)

\(\Leftrightarrow x=2\)

\(\text{Vậy }x=2\)