Cho tam giác cố định, M là điểm di động trên cạnh BC. Dựng đường kính BE của đường tròn ngoại tiếp tam giác ABM và đường kính CF của đường tròn ngoại tiếp tam giác ACM. Gọi N là trung điểm của EF. Chứng minh rằng khi M di động trên BC thì N di động trên 1 đường thẳng cố định.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
+) Chứng minh tứ giác BFLK nội tiếp:
Ta thấy FAH và LAH là hai tam giác vuông có chung cạnh huyền AH nên AFHL là tứ giác nội tiếp. Vậy thì \(\widehat{ALF}=\widehat{AHF}\) (Hai góc nội tiếp cùng chắn cung AF)
Lại có \(\widehat{AHF}=\widehat{FBK}\) (Cùng phụ với góc \(\widehat{FAH}\) )
Vậy nên \(\widehat{ALF}=\widehat{FBK}\), suy ra tứ giác BFLK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)
+) Chứng minh tứ giác CELK nội tiếp:
Hoàn toàn tương tự : Tứ giác AELH nội tiếp nên \(\widehat{ALE}=\widehat{AHE}\) , mà \(\widehat{AHE}=\widehat{ACD}\Rightarrow\widehat{ALE}=\widehat{ACD}\)
Suy ra tứ giác CELK nội tiếp.
Gọi I là giao điểm còn lại của đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK (Kí hiệu lần lượt là (BKF) và (CEK)).
Ta chứng minh được \(\Delta AEF\sim\Delta ABC\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\Rightarrow AE.AC=AF.AB\)
\(\Delta AEH\sim\Delta ADC\Rightarrow\frac{AE}{AD}=\frac{AH}{AC}\Rightarrow AE.AC=AH.AD\)
Vậy nên \(AE.AC=AF.AB=AH.AD\)
Từ đó suy ra A thuộc trục đẳng phương của (BKF) và (CEK).
Vậy thì A, I, K thẳng hàng.
Từ đó, ta có: \(AI.AK=AH.AD\Rightarrow\widehat{HIK}=\widehat{ADK}=90^o\)
Lại có KM, KN là các đường kính của (BKF) và (CEK) nên \(\widehat{MIK}=\widehat{NIK}=90^o\)
Vậy nên M, H, N thẳng hàng.