Cho A=5+52+53+...+5100 . Hỏi A có phải là số chính phương không ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip
a) M = \(5+5^2+5^3+...+5^{80}\)
\(\Leftrightarrow M=5.\left(1+5\right)+5^3\left(1+5\right)+...+5^{79}\left(1+5\right)\)
\(\Leftrightarrow M=5.6+5^3.6+...+5^{79}.6\)
\(\Leftrightarrow M=6.\left(5+5^3+...+5^{79}\right)⋮6\)
=> M chi hết cho 6 => điều phải chứng minh
) M = (5+5^2) + (5^3+5^4) + … + (5^79+5^80)
M = 5(1+5) + 5^3(1+5) + … + 5^79(1+5)
M= 5.6 + 5^3.6 + … + 5^79.6
M = 6(5+5^3+…+5^79) chia hết cho 6
b) Ta thấy : M = 5 + 52+ 53+ ... + 580 cchia hết cho số nguyên tố 5
Mặt khác, do: 52 + 53 + ... 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)
=> M = 5 + 52 + 53 + ... + 580 không chia hết cho 52 (do 5 không chia hết cho 52)
=> M chia hết cho 5 nhưng không chia hết cho 52
=> M không phải số chính phương
A=3+32+....+330
A=(3+32+33)+(34+35+36)+...+(328+329+330)
A=3(1+3+9)+34(1+3+9)+.....+328(1+3+9)
A=3.13+34.13+......+328.13
A=13(3+34+.....+328)
=> A chia hết cho 13
Mình chỉ biết làm như thế thôi à bạn (nhưng nếu bạn thay số 52 thành 40 thì mình làm đc)
Mình không biết làm câu b nha...
KB với mình chứ?
\(A=5+5^2+5^3+...+5^{2021}\)
\(=5\left(1+5\right)+5^2\left(1+5\right)+...+5^{2020}\left(1+5\right)\)
\(=5.6+5^2.6+...+5^{2020}.6\)
\(=6\left(5+5^2+...+5^{2020}\right)\)
Vì \(6\left(5+5^2+...+5^{2020}\right)\) ⋮6
⇒A không là số chính phương
Không Vì A chia hết cho 5 hiển nhiên
nhưng A chia cho 25 dư 5=> không thể là số Cp
Số chia hết cho 5 nhưng không chia hết cho 25 ( 5^2) thì không phải là số chính phương . Vậy A là số chính phương khi A chia hết cho 5^2 tức là các số hạng của A đều chia hết cho 5^2 . Bạn phải hiểu nhé !
Ta có : 5^2 chia hết cho 5^2 , 5^3 chia hết cho 5^2 ,...5^101 chia hết cho 5^2
mà 5 không chia hết cho 5^2 nên A không phải là số chính phương
Vậy A không phải là số chính phương
a) 1 5 + 2 3 = 9 = 3 2 là số chính phương.
b) 2 5 + 5 2 = 57 không là số chính phương.
c) 3 3 . 4 = 108 không là số chính phương.
d) 5 2 + 12 2 = 169 = 13 2 là số chính phương
vì 5^2;5^3;5^4;...;5^100 chia hết cho 5^2
mà 5 ko chia hết cho 5^2
=> A ko chia hết cho 5^2 mà 5^2 là SCP
=> A ko phải là số chính phương
A là số chính phương:
A=5+52+53+...+5100
=5(1+5)+53(1+5)+55(1+5)+...+599(1+6)
=5.6+53.6+55.6+...+599.6
=6.(5+53+55+57+...+599)
Vì 6 là số chính phương nên A là số chính phương