cho x,y,z thỏa mãn x.y.z=1 và x+y+z= 1/x +1/y +1/z tính P= (x^2017-1)(y^2018-1)(z^2019-1)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
TN
2
24 tháng 3 2018
Sửa đề phải là \(x,y,z\ge0\)
Ta có: \(\hept{\begin{cases}x,y,z\ge0\\x+y+z=1\end{cases}}\)
\(\Rightarrow0\le x,y,z\le1\)
\(\Rightarrow0\le x^2,y^2,z^2\le1\)
Theo đề bài ta có
\(x^3+y^3+z^3=x+y+z\)
\(\Leftrightarrow x\left(1-x^2\right)+y\left(1-y^2\right)+z\left(1-z^2\right)=0\)
Để dấu = xảy ra và kết hợp với điều kiện đề bài thì ta suy ra được trong 3 số x, y, z có 2 số = 0 và 1 số = 1
\(\Rightarrow S=1\)