K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Vị trí tương đối của đường thẳng và đường tròn

a) Gọi H là giao điểm của OA và CD

Vì CD là đường trung trực của OA nên:

    CD ⊥ OA và HA = HO

Mà CD ⊥ OA nên HC = HD (đường kính dây cung)

Vì tứ giác ACOD có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành.

Đồng thời CD ⊥ OA nên ACOD là hình thoi.

b) Vì ACOD là hình thoi nên AC = OC

Mà OC = OA ( = R) nên tam giác OAC đều

Suy ra: ^COA=60∘COA^=60∘ hay ˆCOI=60∘

Mà CI ⊥ OC (tính chất tiếp tuyến)

Trong tam giác vuông OCI, ta có:

CI=OC.tgˆCOI=R.tg60∘=R√3CI=OC.tgCOI^=R.tg60∘=R3.

5 tháng 10 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì ACOD là hình thoi nên AC = OC

Mà OC = OA (= R) nên tam giác OAC đều

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

20 tháng 12 2023

O A C D H K I E

a/

Ta có

HA=HO (gt)

\(OA\perp CD\left(gt\right)\) => HC=HD (Trong đường tròn đường kính vuông góc với dây cung thì chia đôi dây cung)

=> OCAD là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành)

Mà \(OA\perp CD\left(gt\right)\)

=> OCAD là hình thoi (Hình bình hành có 2 đường chéo vuôn góc là hình thoi)

b/ Kéo dài AO cắt (O) tại K ta có

\(\widehat{ACK}=90^o\) (góc nt chắn nửa đường tròn)

Xét tg vuông ACK có

\(OA=OK\Rightarrow OC=OA=OK=\dfrac{AK}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

Mà \(OC=AC\) (cạn hình thoi)

\(\Rightarrow OC=AC=OA\) => tg ACO là tg đều \(\Rightarrow\widehat{AOC}=60^o\)

Mà \(\widehat{AOD}=\widehat{AOC}=60^o\) (trong hình thoi mỗi đường chéo là phân giác của 2 góc đối)

\(\Rightarrow\widehat{AOC}+\widehat{AOD}=\widehat{COD}=60^o+60^o=120^o\)

c/

Xét tg vuông COI có

\(\widehat{CIO}=90^o-\widehat{AOC}=90^o-60^o=30^o\)

\(\Rightarrow OC=\dfrac{1}{2}OI\) (trong tg vuông cạnh đối diện với góc \(30^o\) bằng nửa cạnh huyền

\(\Rightarrow OI=2.OC=2R\)

\(\Rightarrow CI=\sqrt{OI^2-OC^2}\) (Pitago)

\(\Rightarrow CI=\sqrt{4R^2-R^2}=R\sqrt{3}\)

d/

Xét tg COI và tg DOI có

OC=OD=R

OI chung

\(\widehat{AOC}=\widehat{AOD}\) (cmt)

=> tg ACO = tg ADO (c.g.c)\(\Rightarrow\widehat{ODI}=\widehat{OCI}=90^o\) => DI là tiếp tuyến với (O)

e/

Ta có

\(sđ\widehat{COD}=sđcungCD=120^o\) (góc có đỉnh là tâm đường tròn)

\(sđ\widehat{ACD}=\dfrac{1}{2}sđcungCD=60^o\) (góc giữa tiếp tuyến và dây cung)

\(sđ\widehat{ADC}=\dfrac{1}{2}sđcungCD=60^o\) (góc giữa tiếp tuyến và dây cung)

Xét tg ACD có

\(\widehat{CAD}=180^o-\left(\widehat{ACD}+\widehat{ADC}\right)=180^o-\left(60^o+60^o\right)=60^o\)

\(\Rightarrow\widehat{CAD}=\widehat{ACD}=\widehat{ADC}=60^o\) => tg ACD là tg đều

f/

Ta có 

\(\widehat{ECD}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow EC\perp CD\)

\(OA\perp CD\left(gt\right)\Rightarrow OI\perp CD\)

=> EC//OI (cùng vuông góc với CD)

 

 

 

 

 

2 tháng 9 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Bán kính OA vuông góc với BC nên MB = MC.

Lại có MO = MA (gt).

Suy ra tứ giác OBAC là hình bình hành vì có các đường chéo cắt nhau tại trung điểm mỗi đường.

Lại có: OA ⊥ BC nên OBAC là hình thoi.

b) Ta có: OA = OB (bán kính)

    OB = BA (tính chất hình thoi).

Nên OA = OB = BA => ΔAOB đều  = >   ∠ A O B   =   60 °

Trong tam giác OBE vuông tại B ta có:

B E   =   O B . t g ∠ A O B   =   O B . t g 60 °   =   R . √ 3

10 tháng 3 2019

a, OA vuông góc với BC tại M

=> M là trung điểm của BC

=> OCAB là hình thoi

b, Tính được BE = R 3

AH
Akai Haruma
Giáo viên
31 tháng 12 2016

Đề số 7

a) Xét tam giác vuông $MBO$ vuông tại $B$ có đường cao $BH$:

\(\frac{1}{BH^2}=\frac{1}{MB^2}+\frac{1}{BO^2}=\frac{1}{BO^2-HO^2}\)\(\Rightarrow \frac{1}{MB^2}=\frac{1}{27}-\frac{1}{36}=\frac{1}{108}\Rightarrow MB=6\sqrt{3} (\text{cm})\)

b) Thấy rằng $BC$ là trung trực của $AO$ và $AO$ cũng là trung trực của $BC$ nên $BA=BO=OC=AC$

Mặt khác \(\cos(\widehat{BOH})=\frac{1}{2}\) nên \(\cos (\widehat{BOC})\neq 90^0\)

Do đó $OBAC$ là hình thoi

c) Vì $OA$ là trung trực của $BC$ nên với điểm $M\in OA$ thì $MB=MC$ suy ra \(\triangle MBO=\triangle MCO\Rightarrow \widehat {MBO}=\widehat{MCO}=90^0\Rightarrow MC\perp CO\)

Do đó $MC$ là tiếp tuyến của $(O)$