Cho tam giác OBD cân tại O, trên tia đối của OD lấy A,trên tia đối của OB lấy C sao cho OC=OA chứng minh Góc ACB= góc CBD. Từ đó suy ra ABCD là hình thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔOCA và ΔOBD có
OC/OB=OA/OD
\(\widehat{COA}=\widehat{BOD}\)
Do đó;ΔOCA\(\sim\)ΔOBD
Suy ra: \(\widehat{OCA}=\widehat{OBD}\)
hay AC//BD
=>ACDB là hình thang
a: Xét ΔOCA và ΔOCB có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOCA=ΔOCB
a: Xét ΔOAB và ΔOCD có
OA=OC
\(\widehat{AOB}=\widehat{COD}\)
OB=OD
Do đó: ΔOAB=ΔOCD
b: ta có: ΔOAB=ΔOCD
nên \(\widehat{OAB}=\widehat{OCD}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
Xét tứ giác ABCD có AB//CD
nên ABCD là hình thang
a: Xét ΔAOC và ΔBOC có
OA=OB
OC chung
AC=BC
Do đó: ΔAOC=ΔBOC
Ta có: ΔOAB cân tại O
mà OC là đường phân giác
nên OC là đường cao
b: Xét tứ giác OBDA có
C là trung điểm của BA
C là trung điểm của OA
Do dó: OBDA là hình bình hành
Suy ra: AD//BO và AD=BO
a: Xét ΔOCA và ΔOCB có
OC chung
\(\widehat{AOC}=\widehat{BOC}\)
OA=OB
Do đó: ΔOCA=ΔOCB
Ta có: ΔOAB cân tại O
mà OC là đường phân giác
nên OC là đường cao
b: Xét tứ giác ADBO có
C là trung điểm của AB
C là trung điểm của DO
Do đó: ADBO là hình bình hành
Suy ra: AD//BO và AD=BO
Xét ΔOAC và ΔODB có
\(\dfrac{OA}{OD}=\dfrac{OC}{OB}\)
\(\widehat{AOC}=\widehat{DOB}\)
Do đó: ΔOAC\(\sim\)ΔODB
Suy ra: \(\widehat{OCA}=\widehat{OBD}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BD
Xét tứ giác ABDC có AC//BD
nên ABDC là hình thang