Với các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số, mỗi số gồm 4 chữ số khác nhau và trong đó nhất thiết phải có mặt chữ số 1 và 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Trước tiên ta đếm số các số tự nhiên có bốn chữ số khác nhau từ các chữ số đã cho.
Gọi số có 4 chữ số là
Có 5 cách chọn a(vì a khác 0); khi đó có cách chọn bcd từ 5 số còn lại.
Theo quy tắc nhân có: số.
+ Tiếp theo, số các số tự nhiên có bốn chữ số khác nhau từ các chữ số đã cho mà không có mặt chữ số 1
Gọi số có 4 chữ số là
Có 4 cách chọn a(vì a khác 0); khi đó có cách chọn bcd từ 4 số còn lại.
Theo quy tắc nhân có số
Vậy số các số tự nhiên có bốn chữ số khác nhau mà nhất thiết phải có mặt số 1 là:
300 – 96 = 204.
Chọn A.
Đáp án B
Số đó nhất thiết phải có mặt 3 chữ số 1, 2, 5 ta chỉ cần chọn 2 chữ số nữa từ 4 chữ số còn lại.
TH1: Hai chữ số được chọn kia không chứa số 0: Ta có
TH2: Hai chữ số kia chứa chữ số 0, ta loại trường hợp chữ số 0 đứng đầu thì còn:
Vậy có tất cả là 648 số
Gọi số cần lập
Bước 1: Xếp chữ số 0 vào 1 trong 5 vị trí từ a2 đến a6, có 5 cách xếp.
Bước 2: Xếp chữ số 1 vào 1 trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn), có 5 cách xếp.
Bước 3: Chọn 4 chữ số trong 8 chữ số {2, 3, 4, 5, 6 , 7, 8, 9}để xếp vào 4 vị trí còn lại, có cách.
Theo quy tắc nhân có số thỏa yêu cầu.
Chọn D.
Bài 1:Cho A={0;1;2;3;4;5}.Hỏi có thể lập được bao nhiêu số có 4 chữ số khác nhau sao cho tổng hai chữ số đầu nhỏ hơn tổng hai chữ số sau 1 đơn vị
Bài 2:Với các chữ số 1;2;3;4;5;6 có thể lập được bao nhiêu số tự nhiên thỏa mãn?
a,gồm có 6 chữ số
b,gồm có 6 chữ số khác nhau
c,gồm có 6 chữ số và chia hết cho 2
Bài 3:Cho X={0;1;2;3;4;5;6}
a,Có bao nhiêu số chẵn có 4 chữ số khác nhau đôi một ?
b,Có bao nhiêu chữ số có 3 chữ số khác nhau chia hết cho 5\
c, Có bao nhiêu số có 3 chữ số khác nhau chia hết cho 9 .
Bài 4:Có bao nhiêu số tự nhiên có tính chất.
a,là số chẵn có 2 chữ số không nhết thiết phải khác nhau
b,là số lẻ và có 2 chữ số không nhất thiết phải khác nhau
c,là số lẻ và có hai chữ số khác nhau
d,là số chẵn và có 2 chữ số khác nhau
Bài 5:Cho tập hợp A{1;2;3;4;5;6}
a,có thể lập được bao nhiêu số gồm 4 chữ số khác nhau hình thành từ tập A
b,có thể lập được bao nhiêu số gồm 3 chữ số khác nhau và chia hết cho 2
c,có thể lập được bao nhiêu số gồm 5 chữ số khác nhau và chia hết cho 5
dài quá
botay.com.vn
a. Gọi chữ số cần lập là \(\overline{abcd}\)
TH1: \(d=0\Rightarrow\) bộ abc có \(A_9^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 4 cách chọn (từ 2,4,6,8)
a có 8 cách chọn (khác 0 và d), b có 8 cách chọn (khác a và d), c có 7 cách chọn (khác a,b,d)
\(\Rightarrow4.8.8.7\) số
Tổng cộng: \(A_9^3+4.8.8.7=...\)
b. Chọn 4 chữ số còn lại: có \(C_7^4\) cách
Hoán vị 3 chữ số 0,1,2: có \(3!\) cách
Coi bộ 3 chữ số này là 1 số, hoán vị với 4 chữ số còn lại: \(5!\) cách
Ta đi tính số trường hợp 0 đứng đầu:
Số 0 đứng đầu trong bộ 0,1,2: có \(2!\) cách
Đặt bộ 0,1,2 đứng đầu, xếp vị trí cho 4 chữ số còn lại: \(4!\) cách
Vậy có: \(C_7^4.\left(3!.5!-2!.4!\right)=...\) số
Chọn 5 chữ số từ 9 chữ số còn lại và hoán vị chúng: \(A_9^5\) cách
5 chữ số đã cho tạo thành 6 khe trống, xếp 3 chữ số 1 vào 6 khe trống đó: \(C_6^3\) cách
\(\Rightarrow A_9^5.C_6^3\) số (bao gồm cả trường hợp số 0 đứng đầu)
Chọn 5 chữ số, trong đó có mặt chữ số 0: \(C_8^4\) cách
Xếp 5 chữ số sao cho số 0 đứng đầu: \(4!\) cách
5 chữ số (trong đó vị trí 0 đứng đầu cố định) tạo ra 5 khe trống, xếp 3 chữ số 1 vào 5 khe trống đó: \(C_5^3\) cách
\(\Rightarrow\) Tổng cộng có: \(A_9^5.C_6^3-C_8^4.4!.C_5^3\) số thỏa mãn
+ Nếu số hàng nghìn khác 0 thì số các số có 4 chữ số khác nhau là : 5 . 5 . 4 . 3 . 2 = 600 số
+ Nếu không có mặt chữ số 1 thì số các số cho 4 chữ số khau nhau là
4 . 4 . 3 . 2 = 96 số
+ Nếu không có mặt chữ số 2 thì số các số có 4 chữ số khau nhau là
4 . 4 . 3 . 2 = 96 số
Vậy nếu không có mặt chữ số 1 hoặc 2 thì sẽ có 96 . 2 = 192 số
Vậy nếu phải xuất hiện cả số 1 và 2 thì số các số có 4 chữ số khác nhau là 600 - 192 = 408 (số)