K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2015

a/ A=20+21+22+.....+299+2100

=>2A=20.2+21.2+22.2+.....+299.2+2100.2=21+22+.....+2100+2101

=>2A-A=(21+22+.....+2100+2101)-(20+21+22+.....+299+2100)

=>A=2^101-1<B

b/C=2+22+23+......+2300

=>2C=21.2+22.2+.....+2299.2+2300.2=22+23+.....+2300+2301

=>2C-C=(22+23+.....+2300+2301)-(2+22+23+......+2300)

=>C=2^301-1<B

17 tháng 12 2023

CM: A ⋮ 5

A = 1 + 4 + 42 + 43 + ... + 460

A = (1 + 4) + (42 + 43) + ... + (459 + 460)

A = 5 + 42 . (1 + 4) + ... + 459 . (1 + 4)

A = 5 + 42 . 5 + ... + 459 . 5

A = 5 . (1 + 42 + ... + 459)  ⋮ 5

Vậy A ⋮ 5

CM: A ⋮ 21

A = 1 + 4 + 42 + 43 + ... + 460

A = (1 + 4 + 42) + (43 + 44 + 45) + ... + (458 + 459 + 460)

A = 21 + 43 . (1 + 4 + 42) + ... + 458 . (1 + 4 + 42)

A = 21 + 43 . 21 + ... + 458 . 21

A = 21 . (1 + 43 + ... + 458)  ⋮ 21

Vậy A ⋮ 21

26 tháng 1 2022

tk

undefined

26 tháng 1 2022

\(A=4+4^2+4^3+...+4^{81}=4\left(1+4+4^2\right)+...+4^{79}\left(1+4+4^2\right)\)

\(=21\left(4+...+4^{79}\right)⋮21\)vậy ta có đpcm 

27 tháng 8 2016

\(43^4+43^5=43^4\left(1+43\right)=43^4\cdot44⋮44\)

Đpcm

27 tháng 8 2016

\(43^4+43^5\)

\(=43^4\left(1+43\right)\)

\(=43^4.44⋮44\) (có thừa số 44)

Vậy: \(43^4+43^5⋮44\)

22 tháng 12 2023

Số số hạng của B:

2023 - 1 + 1 = 2023 (số)

Do 2023 chia 2 dư 1 nên ta có thể nhóm các số hạng của B thành từng nhóm mà mỗi nhóm có 2 số hạng, còn dư 1 số như sau:

B = 4 + (4² + 4³) + (4⁴ + 4⁵) + ... + (4²⁰²² + 4²⁰²³)

= 4 + 4².(1 + 4) + 4⁴.(1 + 4) + ... + 4²⁰²².(1 + 4)

= 4 + 4².5 + 4⁴.5 + ... + 4²⁰²².5

= 4 + 5.(4² + 4⁴ + ... + 4²⁰²²)

Do 5.(4² + 4⁴ + ... + 4²⁰²²) ⋮ 5

⇒ B = 4 + 5.(4² + 4⁴ + ... + 4²⁰²²) chia 5 dư 4

Vậy B không chia hết cho 5

26 tháng 12 2023

Số số hạng của B:

2023 - 1 + 1 = 2023 (số)

Do 2023 chia 2 dư 1 nên ta có thể nhóm các số hạng của B thành từng nhóm mà mỗi nhóm có 2 số hạng, còn dư 1 số như sau:

B = 4 + (4² + 4³) + (4⁴ + 4⁵) + ... + (4²⁰²² + 4²⁰²³)

= 4 + 4².(1 + 4) + 4⁴.(1 + 4) + ... + 4²⁰²².(1 + 4)

= 4 + 4².5 + 4⁴.5 + ... + 4²⁰²².5

= 4 + 5.(4² + 4⁴ + ... + 4²⁰²²)

Do 5.(4² + 4⁴ + ... + 4²⁰²²) ⋮ 5

⇒ B = 4 + 5.(4² + 4⁴ + ... + 4²⁰²²) chia 5 dư 4

Vậy B không chia hết cho 5

26 tháng 12 2023

Bạn đăng câu hỏi xong bạn tự làm luôn rồi?

1 tháng 8 2023

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

1 tháng 8 2023

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)