K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

Ta có:

  • \(3^3=27\equiv1\left(mod13\right)\Rightarrow\left(3^3\right)^{35}=3^{105}\equiv1\left(mod13\right)\)

\(4^3=64\equiv-1\left(mod13\right)\Rightarrow\left(4^3\right)^{35}=4^{105}\equiv-1\left(mod13\right)\)

Vậy \(A=3^{105}+4^{105}\equiv1+\left(-1\right)\left(mod13\right)\) hay \(A⋮13\left(1\right)\)

  • \(4^3\equiv-2\left(mod11\right)\Rightarrow\left(4^3\right)^5=4^{15}\equiv\left(-2\right)^5\left(mod11\right)\) hay \(4^{15}\equiv1\left(mod11\right)\)

\(3^5=243\equiv1\left(mod11\right)\Rightarrow\left(3^5\right)^{21}=3^{105}\equiv1\left(mod11\right)\)

Vậy \(A=3^{105}+4^{105}\equiv1+1\left(mod11\right)\) hay \(A=3^{105}+4^{105}\equiv2\left(mod11\right)\)

=> A không chia hết cho 11 (2)

Từ (1) và (2) => đcpm

24 tháng 10 2016

Chứng minh chia hết cho 13:

\(A=3^{105}+4^{105}\\ A=\left(3^3\right)^{35}+\left(4^3\right)^{35}\\ A=27^{35}+64^{35}\\ A=\left(27+64\right)\left(27^{34}-27^{33}.35+.......+35^{34}\right)\)

\(A=91\left(27^{34}-27^{33}.35+........+35^{34}\right)\)

\(A=13.7\left(27^{34}-27^{33}.35+........+35^{34}\right)\) chia hết cho 13

Chứng minh không chia hết cho 11

\(3^{105}=243^{21}=\left(242+1\right)^{21}=242^{21}+2.242+1^{21}=242^{21}+2.242+1\)

\(242\) chia hết cho 11 nên \(242^{21}+2.242+1\) chia 11 dư 1

\(4^{105}=1024^{21}=\left(1023+1\right)^{21}=1023^{21}+2.1023+1\)

\(1023\) chia hết cho 11 nên \(1023^{21}+2.1023+1\) chia 11 dư 1

Vậy tổng \(A=3^{105}+4^{105}\) chia 11 dư 2 \(\left(1+1\right)\)

Vậy A không chia hết cho 11 (2)

 

20 tháng 8 2018

a)

\(7^6+7^5-7^4\)

\(=7^4\cdot\left(7^2+7-1\right)\)

\(=7^4\cdot55⋮55\left(đpcm\right)\)

Mấy câu kia tương tự, dài quá 

17 tháng 7 2016

đăng từng bài rồi mình giải cho nha

17 tháng 7 2016

Câu 3,57-56+55=55.52-55.5+55=55.(52-5+1)=55.21 chia hết cho 21

Câu:4:76+75-74=74.72+74.7-74=74.(72+7-1)=74.55=74.11.5=73.7.11.5=73.77.5 chia hết cho 77

Các câu khác tương tự

3: \(=5^5\left(5^2-5+1\right)=5^2\cdot21⋮21\)

4: \(=7^4\left(7^2+7-1\right)=7^4\cdot55=7^3\cdot5\cdot77⋮77\)

5: \(=\left(2^{26}+2^{25}-2^{24}\right)=2^{24}\left(2^2+2-1\right)=2^{24}\cdot5⋮5\)

10 tháng 11 2017

a) \(7^{n+4}-7^n\)

\(=7^n\left(7^4-1\right)\)

\(=7^n.2400⋮100\)

b) \(20^5\equiv1\left(mod11\right)\)

\(\Rightarrow20^{15}\equiv1\left(mod11\right)\)

\(\Rightarrow20^5-1\equiv0\left(mod11\right)\)

\(\Rightarrow20^5-1⋮11\)

22 tháng 7 2023

a) Ta có A = 710 + 79 - 78 

                 = 78( 72 + 7 - 1 )

                 = 78 . 55 ⋮ 11 vì 55 ⋮ 11

Vậy A ⋮ 11

b) Ta có B = 115 + 114 + 11

                 = 113( 112 + 11 + 1 )

                 = 113 . 133 ⋮ 7

Vậy B ⋮ 7

22 tháng 7 2023

a,A=710+79-78=78(72+7-1)=78x55 ⋮11 vì 55⋮11

b,115+114+113=113(112+11+1)=113x133⋮7 vì 133⋮7

20 tháng 6 2019

Ta có: a, b là các số tự nhiên không chia hết cho 5

=> Chữ số cuối cùng các số a, b  có thể là 1, 2, 3, 4, 6, 7, 8,9

 mà 1^4=1, 2^4=16, 3^4 =81, 4^4=256, 6^41296,...

=> Như vậy chữ số tận cùng các sô a^4 và b^4 là 1 hoặc 6

=> Chữ số tận cùng các số a^4m, b^4m là 1 hoặc 6

=> Chữ số tận cùng các số a^4m -1  và b^4m -1 là 0 hoặc 5 

=> \(\hept{\begin{cases}a^{4m}-1⋮5\\b^{4m}-1⋮5\end{cases}\Rightarrow}\hept{\begin{cases}x\left(a^{4m}-1\right)⋮5\\y\left(b^{4m}-1\right)⋮5\end{cases}}\)

=> \(x\left(a^{4m}-1\right)+y\left(b^{4m}-1\right)⋮5\Rightarrow xa^{4m}+yb^{4m}+\left(x+y\right)⋮5\Rightarrow xa^{4m}+yb^{4m}⋮5\)vì x+y chia hết cho 5

20 tháng 6 2019

Hoặc nếu em đã được học kiến thức đồng dư:

a, b là các số không chia hết cho 5

=> a^4 , b^4 có chữ số tận cùng là 1, 6 

=> a^4m, b^4m có chữ số tận cùng 1, 6

=> \(\hept{\begin{cases}a^{4m}\equiv1\left(mod5\right)\\b^{4m}\equiv1\left(mod5\right)\end{cases}\Leftrightarrow}\hept{\begin{cases}x.a^{4m}\equiv x\left(mod5\right)\\y.b^{4m}\equiv y\left(mod5\right)\end{cases}\Rightarrow x.a^{4m}+y.b^{4m}\equiv x+y\equiv}0\left(mod5\right)\)