K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

Giả sử tồn tại số tự nhiên n sao cho \(n^2+5n-13⋮121\)

\(\Leftrightarrow\left(n^2-6n+9\right)+11n-22⋮11\) ( Do \(121⋮11\) )

\(\Leftrightarrow\left(n-3\right)^2+11\left(n-2\right)⋮11\)

\(\Rightarrow\left(n-3\right)^2⋮11\)

Mà 11 là số nguyên tố \(\Rightarrow n-3⋮11\) \(\Rightarrow n=11a+3\left(a\in N\right)\)Thay n = 11a + 3 vào ta có:\(\left(11a+3\right)^2+5\left(11a+3\right)-13=121a^2+121a+11⋮̸121\)

\(\Rightarrow\) Vô lí điều ta đã giả sử

\(\Rightarrow\) \(\forall n\in N\) thì \(n^2+5n-13⋮̸121\) ( đpcm)

2 tháng 10 2023

Ta có:

\(n^2+3n+11\) 

\(=n^2+3n+18-7\)

\(=\left(n+2\right)\left(n+9\right)-7\)

Giả sử: \(n^2+3n+11\) ⋮ 49 \(\Rightarrow n^2+3n+11\) ⋮ 7

Mà: \(\left(n+9\right)-\left(n+2\right)\) ⋮ 7

Đồng thời ta có: \(\left(n+9\right)\left(n+2\right)\) ⋮ 49 ngược lại 7 \(⋮̸\)49 

Nên điểu giả sử là sai \(\Rightarrow n^2+3n+11⋮̸49\left(dpcm\right)\) 

 

2 tháng 4 2023

n2+5n+5=(n2+5n)+5

   n2+5n=n.(n+5)

    xét hiệu: (n+5)-n

         mà 5 chia hết cho 5 

=> (n+5)-n chia hết cho 5

hai số (n+5) và n chia hết cho 5 hoặc (n+5) và n chia cho 5 cùng số dư 

th1:hai số (n+5) và n chia hết cho 5 

=> n+5 chia hết cho 5 và n chia hết cho 5

=> n.(n+5) chia hết cho 5 

mà 5 không chia hết cho 25 

=> n2 +5n+5 không chia hết cho 25

th2: n+5 và n  chia cho 5 cùng số dư 

=> n+5 không chia hết cho 5 và n không chia hết cho 5 

=> n.(n+5) không chia hết cho 25

mà 5 chia hết cho 5 

=> n2 + 5n + n  không chia hết cho 25 

vậy với n thuộc N thì n2+5n+5 không chia hết cho 25 

chú ý: không chia hết viết bằng kí hiệu 

26 tháng 2 2023

mình cần giúp gấp

20 tháng 9

Đây là toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau: 

                             Giải

Chứng minh bằng phương pháp phản chứng:

Giả sử A ⋮ 121 ∀ n khi đó ta có với n = k( k \(\in\)n) thì: 

A = k2 + 3k + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)

Với n = k + 1 thì

A = (k + 1)2 + 3(k + 1) + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N) 

⇒ (k + 1).(k + 1) + 3k + 3 + 5⋮ 121

⇒ k2 + k + k + 1 + 3k + 3 + 5 ⋮ 121

⇒ (k2 + 3k + 5) + (k + k) + (1 + 3)⋮ 121

⇒ (k2 + 3k + 5) + 2k + 4 ⋮ 121

⇒ 2k + 4 ⋮ 121

⇒ 2.(k + 2) ⋮ 121

⇒ k + 2 ⋮ 121 (1)

Mà ta có: k2 + 3k + 5 ⋮ 121

               ⇒ k(k + 2) + (k + 2) + 3 ⋮ 121

              ⇒ (k + 2)(k + 1) + 3 ⋮ 121 (2)

Kết hợp (1) và (2) ta có: 3 ⋮ 121 (vô lý)

Vậy điều giả sử là sai hay 

A = n2 + 3n + 5 không chia hết cho 121 với mọi n (đpcm)

 

             

 

     

 

10 tháng 11 2015

a) Nếu n = 5k => n(n+5) = 5k.(5k + 5) = 25k(k+1) chia hết cho 25

Nếu n = 5k +1 => n(n + 5) = (5k + 1).(5k+6) = 5k.5k + 5k.6 + 1.5k + 6 = (25k2 + 35k) + 6 không chia hết cho 5

Nếu n = 5k + 2 => n(n + 5) = (5k + 2)(5k + 7) = (25k2 + 35k + 10k) + 14 không chia hết cho 5

Nếu n = 5k + 3 => n(n + 5) = (5k + 3)(5k + 8) = (25k+ 55k) + 24 không chia hết cho 5

Nếu n = 5k + 4 => n(n + 5) = (5k + 4).(5k + 9) = (25k2 + 45k + 20k) + 36 không chia hết cho 5

Vậy với mọi n thì n(n+5) hoặc chia hết cho 25 hoặc không chia hết cho 5

b,c tương tự:

21 tháng 2 2016

n2+5n+5 chia hết cho 25

=>n2+5n+5 chia hết cho 5

Giả sử n2+5n+5 chia hết cho 5

Vì 5n+5=5(n+1) chia hết cho 5

=>n2 chia hết cho 5,mà 5 là số nguyên tố => n chia hết cho 5

do đó n có dạng:n=5k (k E N)

ta có:n2+5n+5=(5k)2+5.5k+5=52.k2+25k+5=25k2+25k+5

Vì 25k2+25k=25(k2+k) chia hết cho 25,mà 5 ko chia hết cho 25=>n2+5n+5 ko chia hết cho 25

=>Trái giả thiết

Vậy ....

21 tháng 2 2016

Giả sử n^2 + 5n +5 chia het cho 25 => n^2+5n+5 chia het cho 5 => n^2 chia het cho 5 (do 5n+5 chia het cho 5) 
Do đó n chia hết cho 5 (vì 5 là số ng tố) => n=5k (k thuoc N) => n^2+5n+5=25k^2+25k+5 
do 25k^2+25k chia het cho 25 nhưng 5 khong chia het cho 25 nen n^2+5n+5 không chia hết cho 25