K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2017

\(A=x^2+2y^2+2xy+2x+5y+2018\\ =\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+\left(y^2+3y+2,25\right)+2014,75\\ =\left(x+y\right)^2+2\left(x+y\right)+1+\left(y+1,5\right)^2+2014,75\\ =\left(x+y+1\right)^2+\left(y+1,5\right)^2+2014,75\)

Với mọi x ;y thì \(\left(x+y+1\right)^2\ge1\\ \left(y+1,5\right)^2\ge0\\ \Rightarrow\left(x+y+1\right)^2+\left(y+1,5\right)^2+2014,75\ge2015,75\)

Hay \(A\ge2015,75\) với mọi x;y

Để A=2014,75 thì

\(\left\{{}\begin{matrix}\left(x+y+1\right)^2=0\\\\\left(y+1,5\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\\\y=-1,5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2,5\\\\y=-1,5\end{matrix}\right.\)

Vậy...

23 tháng 9 2017

Ko có gìHuyền Anh Kute

6 tháng 7 2018

1/

\(M=3x^2-4x+3=3\left(x^2-\frac{4}{3}x+1\right)=3\left(x^2-2x\cdot\frac{2}{3}+\frac{4}{9}\right)+\frac{5}{3}=3\left(x-\frac{2}{3}\right)^2+\frac{5}{3}\ge\frac{5}{3}>0\)

\(N=5x^2-10x+2018=5\left(x^2-2x+1\right)+2013=5\left(x-1\right)^2+2013\ge2013>0\)

\(P=x^2+2y^2-2xy+4y+7=\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)+3=\left(x-y\right)^2+\left(y+2\right)^2+3\ge3>0\)

2/

\(A=10x-6x^2+7=-6x^2+10x+7=-6\left(x^2-\frac{10}{6}x+\frac{25}{36}\right)-\frac{11}{6}=-6\left(x-\frac{5}{6}\right)^2-\frac{11}{6}\le-\frac{11}{6}< 0\)

\(B=-3x^2+7x+10=-3\left(x^2-\frac{7}{3}x+\frac{49}{36}\right)-\frac{311}{12}=-3\left(x-\frac{7}{6}\right)^2-\frac{311}{12}\le-\frac{311}{12}< 0\)

\(C=2x-2x^2-y^2+2xy-5=\left(2x-x^2-1\right)-\left(x^2-2xy+y^2\right)-4=-\left(x^2-2x+1\right)-\left(x-y\right)^2-4=-\left(x-1\right)^2-\left(x-y\right)^2-4\)\(\le-4< 0\)

19 tháng 7 2021

hello mik biết giải bài này nhưng bn phải viết rõ

31 tháng 7 2019

a) \(=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2>0^{\left(đpcm\right)}\)

b) \(=\left(x-y\right)^2+2\left(x-y\right)+1+y^2-8y+16+3\)

\(=\left(x-y+1\right)^2+\left(y-4\right)^2+3\ge3>0^{\left(đpcm\right)}\)

18 tháng 8 2019

\(4x^2-8x+5=\left(2x\right)^2-2.2.2x+4+1=\left(2x-1\right)^2+1>0\)(luon duong)

18 tháng 8 2019

\(4x^2-8x+5\)

\(=\left(2x\right)^2-2×2×2x+1+4\)

\(=\left(2x-1\right)^2+1\)

\(\Rightarrow\left(2x-1\right)^2+1>0\)

Vậy biểu thức trên luôn dương !!!

5 tháng 10 2021

\(B=x^2-2x+y^2+4y+6=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)

\(B=x^2-2x+y^2+4y+6\)

\(=x^2-2x+1+y^2+4y+4+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)

4 tháng 5 2017

Ta có

ĐÁP ÁN C