Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2xy+2y^2+2y+1=\left(x^2+2xy+y^2\right)+\left(y^2+2y+1\right)\)
Áp dụng hàng đẳng thức \(\left(A+B\right)^2=A^2+2AB+B^2\)ta có: \(=\left(x+y\right)^2+\left(y+1\right)^2\)
Mà \(\left(x+y\right)^2\ge0\forall x;y\)và\(\left(y+1\right)^2\ge0\forall y\)\(\Rightarrow\left(x+y\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Ta có : x2 - x + 1
=.\(x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Hay \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x
Ta có : x2 - 8x + 17
= x2 - 2.x.4 + 16 + 1
= (x - 4)2 + 1
Mà (x - 4)2 \(\ge0\forall x\)
Nên : (x - 4)2 + 1 \(\ge1\forall x\)
Hay (x - 4)2 + 1 \(>0\forall x\)\(>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x
a) \(x^2 +x +1 = x^2 +x +1/4 +3/4 = (x+1/2)^2 +3/4\)
các câu khác dùng phương pháp tương tự
a) x^2 + x +1 = x^2 + x + 1/4 + 3/4 = ( x+ 1/2)^2 + 3/4
Vì (x+1/2)^2 >= 0 => (x+1/2)^2 + 3/4>=3/4 > 0
b) 4x^2 - 2x + 1 = (2x)^2 - 2x + 1/4 + 3/4 = (2x +1/2)^2 + 3/4
Vì (2x +1/2)^2 >=0 => (2x +1/2)^2 + 3/4 >= 3/4 > 0
c) x^4 -3x^2 + 9 = x^4 - 3x^2 + 9/4 + 25/4 = ( x^2+ 3/2)^2 + 9/4
Vì ( x^2+ 3/2)^2 >= 0 => ( x^2+ 3/2)^2 + 9/4 >=9/4 >0
d) x^2 + y^2 -2x-2y + 2xy +1
= ( x^2 + 2xy + y^2) - 2( x+y) +1
= ( x+y)^2 -2(x+y) +1
= (x +y +1)^2 >=0
g) x^2+y^2+2(x-2y)+6
= (x^2 + 2x +1) + (y^2 -4y+4) +1
= ( x+1)^2 + (y-2)^2 +1
Vì (x+1)^2; (y-2)^2 >= 0 => ( x+1)^2 + (y-2)^2 +1>=1>0
a, Ta có: 4x2-2x+1 = (x2 -2x+1)+ 3x2=(x-1)2 +3x2>0 (thay x=1 và x=0 thì biểu thức vãn lớn hơn 0)
b, x4-3x2+9=x4- 6x2 +32 +3x2=(x2-3)2 +3x2 >0
c, x2+y2-2x-2y+2xy+2=(x+y)2 -1 -2(x+y-1) +1 =(x+y -1)(x+y+1) - 2(x+y-1)+1=(x+y-1)(x+y+1-2) + 1=(x+y-1)2 +1 >0
d, 2(x2+3xy+3y2)=2x2+6xy+6y2=(x2+2xy+y2) +(x2+4xy+4y2)+y2=(x+y)2+(x+2y)2+y2>0
e, 2x2+y2+2x(y-1)+2= (x2+2xy+y2) +(x2-2x+1)+1=(x+y)2+(x-1)+1>0
nhớ bấm đúng cho mình nhé!
x2 - x +1
x2 - 2.x .\(\frac{1}{2}\) + \(\left(\frac{1}{2}\right)^2\) _ \(\frac{3}{4}\) = (x- \(\frac{1}{2}\) ) 2 \(\ge\)0 => (x - 1/2)^ 2 - 3/4 \(\ge0\) => luôn dương với mọi x
b,x2+x+2
x2 + 2.x .1/2 +(1/2)^2 - 7/4 =(x+1/2)^2 \(\ge\)0 => (x + 1/2)^ 2 - 7/4 \(\ge0\) => luôn dương với mọi x
c,-a2+a-3
-(a2-a+3)=.-(a2 - 2a .\(\frac{1}{2}\) + \(\left(\frac{1}{2}\right)^2\) _ \(\frac{3}{4}\) = -(a \(\frac{1}{2}\) ) 2 \(\ge\)0 => ( a- 1/2)^ 2 - 3/4 \(\ge0\) => luôn dương với mọi a
d, 3x2-x+1:4x+2x-13
tương tựevhuô,i9o
a) x2 + x + 1 = ( x2 + x + 1/4 ) + 3/4 = ( x + 1/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )
b) 4x2 - 2x + 1 = 4( x2 - 1/2x + 1/16 ) + 3/4 = 4( x - 1/4 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )
c) x4 - 3x2 + 9 (*)
Đặt t = x2
(*) <=> t2 - 3t + 9 = ( t2 - 3t + 9/4 ) + 27/4 = ( t - 3/2 )2 + 27/4 = ( x2 - 3/2 )2 + 27/4 ≥ 27/4 > 0 ∀ x ( đpcm )
d) x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )
e) x2 + y2 - 2x - 2y + 2xy + 2 = ( x2 + 2xy + y2 - 2x - 2y + 1 ) + 1
= [ ( x2 + 2xy + y2 ) - ( 2x + 2y ) + 1 ] + 1
= [ ( x + y )2 - 2( x + y ) + 12 ] + 1
= ( x + y - 1 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )
a) \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)
b) \(4x^2-2x+1=4\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{3}{4}=4\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)
c) \(x^4-3x^2+9=\left(x^4-3x^2+\frac{9}{4}\right)+\frac{27}{4}=\left(x^2-\frac{3}{2}\right)^2+\frac{27}{4}>0\left(\forall x\right)\)
d) \(x^2+y^2-2x-4y+6\)
\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\left(\forall x,y\right)\)
e) \(x^2+y^2-2x-2y+2xy+2\)
\(=\left(x+y\right)^2-2\left(x+y\right)+1+1\)
\(=\left(x+y-1\right)^2+1>0\left(\forall x,y\right)\)
\(A=x^2+2y^2+2xy+2x+5y+2018\\ =\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+\left(y^2+3y+2,25\right)+2014,75\\ =\left(x+y\right)^2+2\left(x+y\right)+1+\left(y+1,5\right)^2+2014,75\\ =\left(x+y+1\right)^2+\left(y+1,5\right)^2+2014,75\)
Với mọi x ;y thì \(\left(x+y+1\right)^2\ge1\\ \left(y+1,5\right)^2\ge0\\ \Rightarrow\left(x+y+1\right)^2+\left(y+1,5\right)^2+2014,75\ge2015,75\)
Hay \(A\ge2015,75\) với mọi x;y
Để A=2014,75 thì
\(\left\{{}\begin{matrix}\left(x+y+1\right)^2=0\\\\\left(y+1,5\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\\\y=-1,5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2,5\\\\y=-1,5\end{matrix}\right.\)
Vậy...
Ko có gìHuyền Anh Kute