K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{10^{2017}+1}{10^{2018}+1}\)

=>\(10A=\dfrac{10^{2018}+1+9}{10^{2018}+1}=1+\dfrac{9}{10^{2018}+1}\)

\(B=\dfrac{10^{2018}+1}{10^{2019}+1}\)

=>\(10B=\dfrac{10^{2019}+1+9}{10^{2019}+1}=1+\dfrac{9}{10^{2019}+1}\)

Do đó:\(10B< 10A\)=>\(B< A\)

7 tháng 9 2017

\(A=\dfrac{10^{2017}+1}{10^{2018}+1}\)

\(10A=\dfrac{10\left(10^{2017}+1\right)}{10^{2018}+1}=\dfrac{10^{2018}+10}{10^{2018}+1}=\dfrac{10^{2018}+1+9}{10^{2018}+1}=\dfrac{10^{2018}+1}{10^{2018}+1}+\dfrac{9}{10^{2018}+1}=1+\dfrac{9}{10^{2018}+1}\)\(B=\dfrac{10^{2018}+1}{10^{2019}+1}\)

\(10B=\dfrac{10\left(10^{2018}+1\right)}{10^{2019}+1}=\dfrac{10^{2019}+10}{10^{2019}+1}=\dfrac{10^{2019}+1+9}{10^{2019}+1}=\dfrac{10^{2019}+1}{10^{2019}+1}+\dfrac{9}{10^{2019}+1}=1+\dfrac{9}{10^{2019}+1}\)\(1+\dfrac{9}{10^{2018}+1}>1+\dfrac{9}{10^{2019}+1}\)

Nên \(10A>10B\)

Nên \(A>B\)

29 tháng 4 2018

AH
Akai Haruma
Giáo viên
24 tháng 3 2021

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

24 tháng 3 2021

Cô ơi cho em hỏi là từ 7h - 9h thứ 2 tuần sau tức ngày 29/3 cô có online không ạ ?

28 tháng 9 2021

\(a,\dfrac{a}{b}>1\Leftrightarrow a>1\cdot b=b\\ \dfrac{a}{b}< 1\Leftrightarrow a< 1\cdot b=b\\ b,\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\\ \dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\\ \forall a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}\\ \forall a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\\ \forall a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)

\(c,\forall a>b\Leftrightarrow\dfrac{a}{b}-1=\dfrac{a-b}{b}>\dfrac{a-b}{b+n}\left(b< b+n;a-b>0\right)=\dfrac{a+n}{b+n}-1\\ \Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a< b\Leftrightarrow1-\dfrac{a}{b}=\dfrac{b-a}{b}>\dfrac{b-a}{b+n}\left(b< b+n;b-a>0\right)=1-\dfrac{a+n}{b+n}\\ \Leftrightarrow1-\dfrac{a}{b}>1-\dfrac{a+n}{b+n}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a=b\Leftrightarrow\dfrac{a+n}{b+n}=\dfrac{a}{b}\left(=1\right)\)

10 tháng 5 2021

a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)

b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)

8 tháng 7 2023

A = \(\dfrac{n^9+1}{n^{10}+1}\) 

\(\dfrac{1}{A}\) = \(\dfrac{n^{10}+1}{n^9+1}\) = n -  \(\dfrac{n-1}{n^9+1}\)

B = \(\dfrac{n^8+1}{n^9+1}\)

\(\dfrac{1}{B}\) = \(\dfrac{n^9+1}{n^8+1}\) =  n - \(\dfrac{n-1}{n^8+1}\)

Vì n > 1 ⇒ n - 1> 0

       \(\dfrac{n-1}{n^9+1}\) < \(\dfrac{n-1}{n^8+1}\)

⇒ n - \(\dfrac{n-1}{n^9+1}\) > n - \(\dfrac{n-1}{n^8+1}\)⇒ \(\dfrac{1}{A}>\dfrac{1}{B}\)

⇒ A < B