Rút gọn
\(\dfrac{8018}{2004.2006-2003.2005}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2004.2006-2003.2005
= ( 2004 - 2003 ) x ( 2006 - 2005 )
= 1 x 1
=1
\(\dfrac{8018}{2004.2006-2003.2005}\)
=\(\dfrac{8018}{\left(2005-1\right).\left(2005+1\right)-\left(2004-1\right).\left(2004+1\right)}\)
=\(\dfrac{8018}{2005^2.1^2-2004^2+1^2}\)
=\(\dfrac{8018}{\left(2005-2004\right).\left(2005.2004\right)}\)
=\(\dfrac{8018}{1.4009}\)
= 2
A = \(\dfrac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}=\dfrac{5.2^{30}.3^{18}-2^{29}.3^{20}}{5.2^{28}.3.3^{19}-7.2^{29}.3^{18}}=\dfrac{2^{29}.3^{18}\left(5.2-3^2\right)}{2^{18}.3^{18}\left(5.3-7.2\right)}=2\)
B = \(\dfrac{8020}{2004.2006-2003.2005}\)
Đặt x = 2004, ta có:
\(\dfrac{4x+2}{x\left(x+2\right)-\left(x-1\right)\left(x+1\right)}=\dfrac{4x+2}{2x+1}=\dfrac{2\left(2x+1\right)}{2x+1}=2\)
Đặt biểu thức là A
\(2A=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{2005-2003}{2003.2005}=\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2003}-\dfrac{1}{2005}=1-\dfrac{1}{2005}=\dfrac{2004}{2005}\)
\(\Rightarrow A=\dfrac{2004}{2005}:2=\dfrac{1002}{2005}\)
Gọi tổng trên là A. Ta có
2A=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2003.2005}\)
2A=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2003}-\dfrac{1}{2005}\)
2A=\(\dfrac{1}{1}-\dfrac{1}{2005}=\dfrac{2005}{2005}-\dfrac{1}{2005}=\dfrac{2004}{2005}\)
⇒ A= \(\dfrac{2004}{2005}:2=\dfrac{2004}{2005}.\dfrac{1}{2}=\dfrac{1002}{2005}\)
Vậy tổng trên bằng \(\dfrac{1002}{2005}\)
Đặt \(U=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2003.2005}\)
\(\Rightarrow U=\dfrac{1.2}{1.2.3}+\dfrac{1.2}{3.2.5}+\dfrac{1.2}{5.2.7}+...+\dfrac{1.2}{2003.2.2005}\)
\(\Rightarrow U=\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2003.2005}\right)\)
\(\Rightarrow U=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2003}-\dfrac{1}{2005}\right)\)
\(\Rightarrow U=\dfrac{1}{2}.\left(1-\dfrac{1}{2005}\right)\Rightarrow U=\dfrac{1}{2}.\dfrac{2004}{2005}\Rightarrow U=\dfrac{1002}{2005}\)
\(a,C=\dfrac{2x^2-x-x-1+2-x^2}{x-1}\left(x\ne1\right)\\ C=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\\ b,D=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\left(a>0;a\ne1\right)\\ D=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Có
a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2003.2004}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2003}-\dfrac{1}{2004}=1-\dfrac{1}{2004}=\dfrac{2003}{2004}\)b)Đặt \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2003.2005}\)
\(\Rightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2003.2005}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2003}-\dfrac{1}{2005}=1-\dfrac{1}{2005}=\dfrac{2004}{2005}\)\(\Rightarrow A=\dfrac{1002}{2005}\)
a: Ta có: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2003\cdot2004}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2003}-\dfrac{1}{2004}\)
\(=\dfrac{2003}{2004}\)
\(\dfrac{32.9.11}{12.24.22}\) = \(\dfrac{8.4.3.3.11}{3.4.8.3.11.2}\) = \(\dfrac{1}{2}\)
\(\dfrac{32.9.11}{12.24.22}=\dfrac{8.4.3.3.11}{3.4.8.3.11.2}=\dfrac{1}{2}\)
\(\dfrac{8018}{2004.2006-2003.2005}\)
\(=\dfrac{8018}{\left(2005-1\right)\left(2005+1\right)-\left(2004-1\right)\left(2004+1\right)}\)
\(=\dfrac{8018}{2005^2-1^2-2004^2+1^2}=\dfrac{8018}{\left(2005-2004\right)\left(2005+2004\right)}\)
\(=\dfrac{8018}{1.4009}=2\)
Chúc bạn học tốt!!!
Đặt:
\(HANG=\dfrac{8018}{2004.2006-2003.2005}\)
\(HANG=\dfrac{8018}{\left(2005-1\right)\left(2005+1\right)-\left(2004-1\right)\left(2004+1\right)}\)
\(HANG=\dfrac{8018}{2005^2-1-2004^2+1}\)
\(HANG=\dfrac{8018}{2005^2-2004^2}\)
\(HANG=\dfrac{8018}{\left(2005-2004\right)\left(2005+2004\right)}\)
\(HANG=\dfrac{8018}{4009}=2\)
Vậy \(HANG=2\)