mọi số hữu tỉ đều đc viết dưới dạng phân số a/b vs a,b thuộc Z; b khác 0 là đúng hay sai?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn An phát biểu sai vì 0 là số hữu tỉ(vì \(0=\dfrac{0}{1}\))
Bạn Bình phát biểu sai vì phải thêm điều kiện \(b\ne0\) nữa thì \(\dfrac{a}{b}\) mới là số hữu tỉ
Bạn Chi nói đúng vì tất cả các số nguyên a đều viết được dưới dạng \(\dfrac{a}{1}\) nên chúng là số hữu tỉ
a) Mệnh đề “Mọi số nguyên đều viết được dưới dạng phân số” đúng.
Vì \(\forall a \in \mathbb{Z}:a = \dfrac{a}{1}\)
Hoặc: \(a \in \mathbb{Z} \subset \mathbb{Q}\) => mỗi số nguyên cũng là một phân số.
b) Mệnh đề "Tập hợp các số thực chứa tập hợp các số hữu tỉ" là mệnh đề đúng.
c) Mệnh đề “Tồn tại một số thực không là số hữu tỉ” đúng.
Ví dụ: \(\sqrt 2 \) ( vì \(\sqrt 2 \in \mathbb{R};\;\sqrt 2 \notin \mathbb{Q}\)).
a, - \(\dfrac{11}{25}\) = \(\dfrac{-6}{25}\) + \(\dfrac{-5}{25}\) +
- \(\dfrac{11}{25}\) = \(\dfrac{-1}{25}\) + \(\dfrac{-10}{25}\) +
- \(\dfrac{11}{25}\) = \(\dfrac{-3}{25}\) + \(\dfrac{-8}{25}\) +
b, - \(\dfrac{11}{25}\) = \(\dfrac{6}{25}\) - \(\dfrac{17}{25}\)
- \(\dfrac{11}{25}\) = \(\dfrac{7}{25}\) - \(\dfrac{18}{25}\)
- \(\dfrac{11}{25}\) = \(\dfrac{8}{25}\) - \(\dfrac{19}{25}\)
Mình làm câu a
\(Để\frac{a}{b}< \frac{a+c}{b+d}\) thì a(b+d) < b(a+c) ↔ ab + ad , ab + bc ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)
\(Để\frac{a+c}{b+d}< \frac{c}{d}\) thì (a+c).d < (b+d).c ↔ ad + cd < bc + cd ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)
Trong sách có ghi như thế mà dĩ nhiên là đúng rồi
Đúng