biết tg 'apha' =\(\dfrac{5}{12}\)
a, tính sin a ,cos a
b, biết cos a =0.4.tìm tg a, cotg a, sin a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giac abc biet ab:bc:ac =5:6:7, tam giac def dong dang tam giac abc va canh nho nhat cua tam giac def la 1,5m . Tinh cac canh cua tam giac def
Tìm gì hả cậu . HB thì làm ntn . Tự vẽ hình .
Áp dụng đính lý Pytago vào tam giác ABh vuông tại H,ta có :
\(AB^2-AH^2=HB^2\)
\(\Leftrightarrow13^2-12^2=HB^2\)
\(\Leftrightarrow169-144=HB^2\)
\(HB^2=25\)
\(\Rightarrow HB=5cm\)
A. Để chứng minh rằng $\triangle ABH \sim \triangle CAH$, ta cần chứng minh tỉ số đồng dạng giữa các cặp cạnh tương ứng của hai tam giác này bằng nhau.
Ta có:
Vậy, theo định lí góc - cạnh - góc, ta có:
$$\frac{AB}{AH} = \frac{10}{AH} = \frac{AH}{AC} = \frac{AH}{16}$$
Từ đó suy ra:
$$\frac{AB}{AH} = \frac{AH}{AC} \Rightarrow \triangle ABH \sim \triangle CAH$$
B. Ta có:
$$k = \frac{AB}{AC} = \frac{10}{16} = \frac{5}{8}$$
$$k' = \frac{AC}{AB} = \frac{16}{10} = \frac{8}{5}$$
Vậy, ta đã suy ra được tỉ số đồng dạng giữa các cạnh của ba tam giác $\triangle ABH$, $\triangle CAH$ và $\triangle ABC$.
Do đó, ta có:
$$BC = AB \times k' = 10 \times \frac{8}{5} = 16$$
$$AH = AC \times k = 16 \times \frac{5}{8} = 10$$
C. Để tính diện tích của các tam giác này, ta sử dụng công thức:
$$S = \frac{1}{2} \times cạnh\ gần\ đáy \times độ\ cao$$
$$S_{ABH} = \frac{1}{2} \times AB \times AH = \frac{1}{2} \times 10 \times 10 = 50\ cm^2$$
$$S_{CAH} = \frac{1}{2} \times AC \times AH = \frac{1}{2} \times 16 \times 10 = 80\ cm^2$$
$$S_{ABC} = \frac{1}{2} \times AB \times AC = \frac{1}{2} \times 10 \times 16 = 80\ cm^2$$
a: \(1+\tan^2a=\dfrac{1}{\cos^2a}\)
nên \(\dfrac{1}{\cos^2a}=\dfrac{169}{144}\)
\(\Leftrightarrow\cos a=\dfrac{12}{13}\)
=>\(\sin a=\dfrac{5}{13}\)
b: \(\sin a=\sqrt{1-0.4^2}=\dfrac{\sqrt{21}}{5}\)
\(\tan a=\dfrac{\sqrt{21}}{2}\)
\(\cot a=\dfrac{2\sqrt{21}}{21}\)