K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2021

giúp mình câu b với các bạn ơi

 

17 tháng 4 2017


Lại còn phải cm định lý à, xem lại lớp 7. Trong tam giác, 3 đường cao của tam giác cùng đi qua 1 điểm

17 tháng 4 2017

Mình biết rồi. Nhưng giờ phải chứng minh giao điểm H của các đường cao của tam giác ABC giao điểm là đường phân giác trong của tam giác DEF. Bạn đọc lại đề đi.

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AC=AF\cdot AB\)(ĐPCM)

b)

Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

góc DCA chung

=>ΔCDA đồng dạng với ΔCEB

=>CD/CE=CA/CB

=>CD*CB=CA*CE và CD/CA=CE/CB

b; Xét ΔCDE và ΔCAB có

CD/CA=CE/CB

góc C chung

=>ΔCDE đồng dạng với ΔCAB

c:

Xét ΔCAB có

AD,BE là đường cao

AD cắt BE tại H

=>H là trực tâm

=>CH vuông góc AB tại F

góc CEB=góc CFB=90 độ

=>CEFB nội tiếp

=>góc CEF+góc CBF=180 độ

mà góc CEF+góc AEF=180 độ

nên góc AEF=góc CBA

=>góc AEF=góc CED

16 tháng 4 2023

Giúp với

 

a: Xét ΔAEBvuông tại E và ΔAFC vuông tại F co

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

b: ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC

Cho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại FCho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại F. Gọi K,L, R lần lượt là chân đường vuông góc kẻ từ N...
Đọc tiếp
Cho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại FCho tam giác ABC nhọn (AB < AC) . Các đường cao AD, BM, CN của tam giác ABC cắt nhau tại H. Gọi O là trung điểm của BC, E là điểm đối xứng của H qua O. Kẻ CF vuông góc với BE tại F. Gọi K,L, R lần lượt là chân đường vuông góc kẻ từ N đến AC, AD, BC. Gọi giao điểm của DM và CN là S. CMR:
1. Ba điểm K, L, R thẳng hàng
2. HN.CS=NC.SH
3. Tia phân giác của góc BAC cắt BC tại I, kẻ đường thẳng đi qua C và vuông góc với đường thẳng Al tại P, đường thẳng CP cắt đường thẳng AO tại Q. Gọi G là trung điểm của đoạn thẳng IQ. CMR: đường thẳng PG đi qua trung điểm của đoạn thẳng AC
0

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiêp

=>góc AFE=góc ACB

mà góc FAE chung

nên ΔAFE đồng dạng với ΔACB

b: Xét ΔDAB vuông tại D và ΔDCH vuông tại D có

góc DAB=góc DCH

=>ΔDAB đồng dạng vơi ΔDCH

=>DA/DC=DB/DH

=>DA*DH=DB*DC

c: Xét ΔHDC vuông tại D và ΔHFA vuông tại F có

góc DHC=góc FHA

=>ΔHDC đồng dạng vơi ΔHFA

=>HD/HF=HC/HA

=>HF*HC=HD*HA

Xet ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC

=>HF*HC=HB*HE=HD*HA

Xét ΔAFC vuông tại F và ΔAEB vuông tại E có

CF=BE

góc ACF=gócABE

=>ΔAFC=ΔAEB

=>AC=AB

Xét ΔCEB vuông tại E và ΔCDA vuông tại D có

EB=DA

góc C chung

=>ΔCEB=ΔCDA

=>CB=CA=AB

=>ΔABC đều

21 tháng 9 2023

Tham khảo:

Xét tam giác BFC và tam giác BEC có :

BC chung

FC = BE

\(\widehat {BFC} = \widehat {BEC} = {90^o}\)

 ( cạnh huyền – cạnh góc vuông)

\( \Rightarrow \widehat C = \widehat B\) ( 2 góc tương ứng ) (1)

Xét tam giác CFA và tam giác ADC ta có :

CF = AD

AC chung

\(\widehat {ADC} = \widehat {AFC} = {90^o}\)

(cạnh huyền – cạnh góc vuông)

\( \Rightarrow \widehat C = \widehat A\)(2 góc tương ứng ) (2)

Từ (1) và (2) \( \Rightarrow \widehat C = \widehat A = \widehat B\) \( \Rightarrow \)Tam giác ABC là tam giác đều do có 3 góc bằng nhau