K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{4032}{2017}\)

\(\Leftrightarrow2\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{4032}{2017}\)

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)

\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)

=>x+1=2017

hay x=2016

11 tháng 5 2016

\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2017}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2017}\)

\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2017}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2017}:2\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{4034}\)

\(\frac{1}{x+1}=\frac{1}{2017}\)

=>x+1=2017

=>x=2016

11 tháng 5 2016

\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)

\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2016}:2\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{4032}\)

\(\frac{1}{x+1}=\frac{1}{4032}\)

=>x+1=4032

=>x=4031

5 tháng 5 2017

bạn viết đề lung tung thế

5 tháng 5 2017

Bn ns chuẩn cmnr luôn !!!

20 tháng 5 2016

= 2/(2.3) + 2/3.4 + 2/4.5 +...+ 2/x(x+1)

= 2 [1/2-1/3+1/3-1/4+...+1/x-1/(x+1)]

=2[1/2-1/(x+1)]= (x-1)/(x+1)

= 2001/2003

==> x=2002

20 tháng 5 2016

x=2002

16 tháng 8 2016

\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=1\frac{2015}{2017}\)

\(\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=\frac{4032}{2017}\)

\(2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{4032}{2017}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{4032}{2017}:2\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{4032}{2017}.\frac{1}{2}\)

\(1-\frac{1}{x+1}=\frac{2016}{2017}\)

\(\frac{x}{x+1}=\frac{2016}{2017}\)

=> \(x=2016\)

5 tháng 8 2016

Theo đầu bài ta có:
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2017}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2017}\)
\(\Rightarrow2\cdot\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2015}{2017}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{4034}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{4034}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2017}\)
\(\Rightarrow x+1=2017\)
\(\Rightarrow x=2016\)

5 tháng 8 2016

\(\frac{2}{6}\)\(+\frac{2}{12}\)\(+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2017}\)

\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2017}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2017}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2017}\div2\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{4034}\)

\(\frac{1}{x+1}=\frac{1}{2017}\)

\(=>x+1=2017\)

\(=>x=2016\)

Chúc bạn học tốt Vu_anh_tuan !