Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(=\lim\limits_{x\rightarrow-\infty}x^3\left(3+\dfrac{5x^2}{x^3}-\dfrac{9\sqrt{2}x}{x^3}-\dfrac{2017}{x^3}\right)=3.x^3=-\infty\)
b/ \(=\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{1+\dfrac{x}{x^2}+\dfrac{1}{x^2}}-\sqrt[3]{2+\dfrac{x}{x^3}-\dfrac{1}{x^3}}\right)=\left(1-\sqrt[3]{2}\right)x=-\infty\)
c/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2-x^2-x-1}{x+\sqrt{x^2+x+1}}=\lim\limits_{x\rightarrow-\infty}\dfrac{-\dfrac{x}{x}-\dfrac{1}{x}}{\dfrac{x}{x}-\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}}=-\dfrac{1}{1-1}=-\infty\)
d/ \(=\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+x^2+1}-x\right)+\lim\limits_{x\rightarrow-\infty}\left(x+\sqrt{x^2+x+1}\right)\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^3+x^2+1-x^3}{\left(\sqrt[3]{x^3+x^2+1}\right)^2+x\sqrt[3]{x^3+x^2+1}-x^2}+\lim\limits_{x\rightarrow-\infty}\dfrac{x^2-x^2-x-1}{x-\sqrt{x^2+x+1}}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2+1}{\left(-x\sqrt[3]{\dfrac{x^3}{x^3}+\dfrac{x^2}{x^3}+\dfrac{1}{x^3}}\right)^2-x.x\sqrt[3]{\dfrac{x^3}{x^3}+\dfrac{x^2}{x^3}+\dfrac{1}{x^3}}-x^2}+\lim\limits_{x\rightarrow-\infty}\dfrac{-x-1}{x+x\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}}\)
\(=\dfrac{1}{1-1-1}+\dfrac{-1}{1+1}=-1-\dfrac{1}{2}=-\dfrac{3}{2}\)
3.
Đặt \(f\left(x\right)=x^4-3x^3+x-\dfrac{1}{8}\)
Hàm \(f\left(x\right)\) liên tục trên R
Do \(f\left(x\right)\) là đa thức bậc 4 nên có tối đa 4 nghiệm
Ta có: \(f\left(-1\right)=\dfrac{23}{8}>0\)
\(f\left(0\right)=-\dfrac{1}{8}< 0\Rightarrow f\left(-1\right).f\left(0\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)
\(f\left(\dfrac{1}{2}\right)=\dfrac{1}{16}>0\Rightarrow f\left(0\right).f\left(\dfrac{1}{2}\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;\dfrac{1}{2}\right)\)
\(f\left(1\right)=-\dfrac{9}{8}< 0\Rightarrow f\left(\dfrac{1}{2}\right).f\left(1\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(\dfrac{1}{2};1\right)\)
\(f\left(3\right)=\dfrac{23}{8}>0\Rightarrow f\left(1\right).f\left(3\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;3\right)\)
Vậy pt có 4 nghiệm thuộc các khoảng nói trên
4.
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2+ax+2017}+x\right)=\lim\limits_{x\rightarrow-\infty}\dfrac{ax+2017}{\sqrt{x^2+ax+2017}-x}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{a+\dfrac{2017}{x}}{-\sqrt{1+\dfrac{a}{x}+\dfrac{2017}{x^2}}-1}=-\dfrac{a}{2}\)
\(\Rightarrow-\dfrac{a}{2}=6\Rightarrow a=-12\)
Mấy câu này bạn cần giải theo kiểu trắc nghiệm hay tự luận nhỉ?
Hiển nhiên là cách đầu sai rồi em
Khi đến \(\lim x^2\left(1-1\right)=+\infty.0\) là 1 dạng vô định khác, đâu thể kết luận nó bằng 0 được
\(\lim\limits_{x\rightarrow-\infty}\dfrac{-a\sqrt{1+\dfrac{1}{x^2}}+\dfrac{2017}{x}}{1+\dfrac{2018}{x}}=-a\Rightarrow a=-\dfrac{1}{2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{bx+1}{\sqrt{x^2+bx+1}+x}=\lim\limits_{x\rightarrow+\infty}\dfrac{b+\dfrac{1}{x}}{\sqrt{1+\dfrac{b}{x}+\dfrac{1}{x^2}}+1}=\dfrac{b}{2}=2\Rightarrow b=4\)
\(\Rightarrow P=2\)
\(f\left(x\right)=\sqrt{4+3u\left(x\right)}\)
\(\Leftrightarrow f'\left(x\right)=\dfrac{\left(4+3u\left(x\right)\right)'}{2\sqrt{4+3u\left(x\right)}}=\dfrac{3u'\left(x\right)}{2\cdot\sqrt{4+3u\left(x\right)}}\)
\(f'\left(1\right)=\dfrac{3\cdot u'\left(1\right)}{2\cdot\sqrt{4+3u\left(1\right)}}=\dfrac{3\cdot10}{2\cdot\sqrt{4+3\cdot7}}=3\)
=>Chọn C
\(\Leftrightarrow\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{4032}{2017}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{4032}{2017}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)
=>x+1=2017
hay x=2016