Cho tam giác ABC nhọn. Chứng minh rằng: AB^2= AC^2+BC^2-2*AC*BC*cosC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC nhọn có \(BC^2=AB^2+AC^2-2AB\cdot AC\cdot\cos\widehat{A}\)
\(\Rightarrow\cos\widehat{A}=\dfrac{AB^2+AC^2-BC^2}{2AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4\cdot\dfrac{1}{2}AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4S_{ABC}}\)
Cmtt: \(\left\{{}\begin{matrix}\cos\widehat{B}=\dfrac{AB^2+BC^2-AC^2}{4S_{ABC}}\\\cos\widehat{C}=\dfrac{AC^2+BC^2-AB^2}{4S_{ABC}}\end{matrix}\right.\)
\(\Rightarrow\cos\widehat{A}+\cos\widehat{B}+\cos\widehat{C}\\
=\dfrac{AB^2+AC^2-BC^2+AB^2+BC^2-AC^2+AC^2+BC^2-AB^2}{4S_{ABC}}\\
=\dfrac{AB^2+AC^2+BC62}{4S_{ABC}}\)
Đây là định lý hàm cos:
Kẻ đường cao AH xuống BC \(\Rightarrow CH=AC.cosC\)
Áp dụng đl Pitago ta có:
\(AB^2=AH^2+BH^2=AC^2-CH^2+\left(BC-CH\right)^2\)
\(=AC^2-CH^2+BC^2-2BC.CH+CH^2\)
\(=AC^2+BC^2-2BC.CH\)
\(=AC^2+BC^2-2AC.BC.cosC\)
đánh lên lại tim đi,bai này lm nhiều quá đến ngán rồi
Để chứng minh rằng SABC = AB.AC.căn 3/4 và BC^2 = AB^2 + AC^2 - AB.AC, ta có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng EF = BC/2 và SBCEF = 3SAEF, ta cũng có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng IM = 2IN và MFI = 30°, ta có thể sử dụng các định lý về tia phân giác và góc trong tam giác.
Tuy nhiên, để có thể chứng minh chính xác các phần trên, cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.
Để chứng minh rằng SABC = AB.AC.căn 3/4 và BC^2 = AB^2 + AC^2 - AB.AC, ta có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng EF = BC/2 và SBCEF = 3SAEF, ta cũng có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng IM = 2IN và MFI = 30°, ta có thể sử dụng các định lý về tia phân giác và góc trong tam giác.
Tuy nhiên, để có thể chứng minh chính xác các phần trên, cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.
Đây là định lý hàm cos!
- Kẻ đường cao AH xuống BC
⇒CH=AC.cosC
Áp dụng định lí Pitago ta có:
AB2=AH2+BH2=AC2−CH2+(BC−CH)2
=AC2−CH2+BC2−2BC.CH+CH2
=AC2+BC2−2BC.CH
=AC2+BC2−2AC.BC.cosC (Điều phải chứng minh)