Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC nhọn có \(BC^2=AB^2+AC^2-2AB\cdot AC\cdot\cos\widehat{A}\)
\(\Rightarrow\cos\widehat{A}=\dfrac{AB^2+AC^2-BC^2}{2AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4\cdot\dfrac{1}{2}AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4S_{ABC}}\)
Cmtt: \(\left\{{}\begin{matrix}\cos\widehat{B}=\dfrac{AB^2+BC^2-AC^2}{4S_{ABC}}\\\cos\widehat{C}=\dfrac{AC^2+BC^2-AB^2}{4S_{ABC}}\end{matrix}\right.\)
\(\Rightarrow\cos\widehat{A}+\cos\widehat{B}+\cos\widehat{C}\\
=\dfrac{AB^2+AC^2-BC^2+AB^2+BC^2-AC^2+AC^2+BC^2-AB^2}{4S_{ABC}}\\
=\dfrac{AB^2+AC^2+BC62}{4S_{ABC}}\)
đây là định lý cosin lớp 10
a2 = b2+c2 - 2bccosa
b2 = a2+c2 - 2accosb
c2 = a2+b2 -2abcosc
Đây là định lý hàm cos:
Kẻ đường cao AH xuống BC \(\Rightarrow CH=AC.cosC\)
Áp dụng đl Pitago ta có:
\(AB^2=AH^2+BH^2=AC^2-CH^2+\left(BC-CH\right)^2\)
\(=AC^2-CH^2+BC^2-2BC.CH+CH^2\)
\(=AC^2+BC^2-2BC.CH\)
\(=AC^2+BC^2-2AC.BC.cosC\)
ta có cos b =ab/bc
<=> abc vuông
nói nôm na là cos b = kề/huyền
chỉ có tam giác vuông mới có cạnh huyền => tam giác abc vuông