K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

a) \(\left|x-3\right|\ge0\forall x\Rightarrow\left|x-3\right|+10\ge10\forall x\)

\(\Rightarrow A\ge10\forall x\)

Dấu "=" xảy ra khi \(\left|x-3\right|=10\Rightarrow x=13\)

Vậy \(MAX_A=10\) khi \(x=13.\)

b) \(\left(x-1\right)^2\ge0\Rightarrow-7+\left(x-1\right)^2\ge-7\)

\(\Rightarrow B\ge-7\forall x\)

Dấu "=" xảy ra khi \(\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy \(MAX_B=-7\) khi x = 1.

20 tháng 7 2017

\(\forall\) là gì?

13 tháng 7 2018

1) câu này sai đề hả bn? -.-

\(2)B=-x^2-4x-7\)

\(B=-\left(x^2+4x+7\right)\)

\(B=-\left(x^2+4x+4+3\right)\)

\(B=-\left[\left(x+2\right)^2+3\right]\)

\(B=-\left(x+2\right)^2-3\)

Vậy biểu thức trên luôn âm với mọi giá trị của x.

\(3)C=-x^2-6x-11\)

\(C=-\left(x^2+6x+11\right)\)

\(C=-\left(x^2+6x+9+2\right)\)

\(C=-\left[\left(x+3\right)^2+2\right]\)

\(C=-\left(x+3\right)^2-2\)

Vậy biểu thức trên luôn âm với mọi x.

1: \(=-\left(x^2+2x+2\right)\)

\(=-\left(x^2+2x+1+1\right)\)

\(=-\left(x+1\right)^2-1< 0\)

2: \(=-\left(x^2+4x+7\right)\)

\(=-\left(x^2+4x+4+3\right)\)

\(=-\left(x+2\right)^2-3< 0\)

3: \(=-\left(x^2+6x+11\right)\)

\(=-\left(x^2+6x+9+2\right)\)

\(=-\left(x+3\right)^2-2< 0\)

22 tháng 9 2018

điều kiện xác định : \(x\ge0;x\ne1\)

a) ta có : \(A=\left(\dfrac{1}{1-\sqrt{x}}+\dfrac{1}{1+\sqrt{x}}\right):\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{1+\sqrt{x}}\right)+\dfrac{1}{1-\sqrt{x}}\)

\(\Leftrightarrow A=\left(\dfrac{2}{1-x}\right):\left(\dfrac{2\sqrt{x}}{1-x}\right)+\dfrac{1}{1-\sqrt{x}}\)

\(\Leftrightarrow A=\left(\dfrac{2}{1-x}\right)\left(\dfrac{1-x}{2\sqrt{x}}\right)+\dfrac{1}{1-\sqrt{x}}=\dfrac{1}{\sqrt{x}}+\dfrac{1}{1-\sqrt{x}}\)

ta có : \(x=7+4\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)

\(\Rightarrow A=\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{1-2-\sqrt{3}}=\dfrac{5-3\sqrt{3}}{2}\)

b) áp dụng cauchuy-schwarz dạng engel ta có :

\(A=\dfrac{1}{\sqrt{x}}+\dfrac{1}{1-\sqrt{x}}\ge4\)

dấu "=" xảy ra khi : \(\sqrt{x}=1-\sqrt{x}\Leftrightarrow2\sqrt{x}=1\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)

vậy ....................................................................................................................

21 tháng 9 2018

Mysterious Person giup e

13 tháng 7 2018

Ta có : 

\(G=-5x^2+7x-3\)

\(\Rightarrow G=-\left(5x^2+7x+3\right)\)

\(\Rightarrow G=-\left[x^2+2x.\frac{7}{2}+\left(\frac{7}{2}\right)^2-\left(\frac{7}{2}\right)^2+4x^2\right]\)

\(\Rightarrow G=-\left[\left(x+\frac{7}{2}\right)^2+\frac{49}{4}-3+4x^2\right]\)

\(\Rightarrow G=-\left[\left(x+\frac{7}{2}\right)^2+\frac{37}{4}+4x^2\right]\)\(\Rightarrow G=-\left(x+\frac{7}{2}\right)^2-\frac{37}{4}-4x^2\)

\(\Rightarrow G< 0\forall x\)

\(H=-4x^2-6x-4\)

\(\Rightarrow H=-\left(4x^2+6x+4\right)\)

\(\Rightarrow H=-\left[\left(2x\right)^2+2.2x.\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{7}{4}\right]\)

\(\Rightarrow H=-\left[\left(2x+\frac{3}{2}\right)^2+\frac{7}{4}\right]\)

\(\Rightarrow H=-\left(2x+\frac{3}{2}\right)^2-\frac{7}{4}< 0\forall x\)

11 tháng 7 2017

Để : \(\frac{3}{x+1}\in Z\) thì 3 chia hết cho n + 1

=> n + 1 thuộc Ư(3) = {-3;-1;1;3}

Ta có bảng ; 

n + 1-3-113
n-4-202
11 tháng 7 2017

cảm ơn bạn nha # Nguyễn Việt Hoàng
bạn giúp mik những câu sau được không

\(=-5\left(x^2-\dfrac{7}{5}x+\dfrac{3}{5}\right)\)

\(=-5\left(x^2-2\cdot x\cdot\dfrac{7}{10}+\dfrac{49}{100}+\dfrac{11}{100}\right)\)

\(=-5\left(x-\dfrac{7}{10}\right)^2-\dfrac{11}{20}< 0\)

13 tháng 7 2018

\(E=-x^2-3x-5=-\left(x^2+3x+5\right)=-\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}\\ \)

\(=-\left(x+\frac{3}{2}\right)^2-\frac{11}{4}=-\left(\left(x+\frac{3}{2}\right)^2+\frac{11}{4}\right)\le-\frac{11}{4}< 0\)

\(F=-3x^2-6x-4=-3.\left(x^2+2x+\frac{4}{3}\right)=-3.\left(\left(x^2+2x+1\right)+\frac{1}{3}\right)\)

\(=-3.\left(\left(x+1\right)^2+\frac{1}{3}\right)\le-\frac{3.1}{3}=-1< 0\)

13 tháng 7 2018

\(-x^2-3x-5\)

\(=-\left(x^2+3x+5\right)\)

\(=-\left[x^2+2x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+5\right]\)

\(=-\left[\left(x+\frac{3}{2}\right)^2-\frac{9}{4}+5\right]\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{11}{4}\)

Vậy biểu thức luôn âm với mọi giá trị của x.