K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

Gọi 2 cạnh góc vuông và cạnh huyền của tam giác đó lần lượt là a;b;c

Theo đề bài ta có : \(S=\frac{ab}{2}=150m^2\Rightarrow ab=300\left(m\right)\)

Và \(\frac{a}{3}=\frac{b}{4}\) \(\Rightarrow\left(\frac{a}{3}\right)^2=\left(\frac{b}{4}\right)^2=\frac{ab}{3.4}=\frac{300}{12}=25=5^2\)

\(\Rightarrow\left(\frac{a}{3}\right)^2=5^2\Rightarrow\frac{a}{3}=5\Rightarrow a=15\)

\(\Rightarrow\left(\frac{b}{4}\right)^2=5^2\Rightarrow\frac{b}{4}=5\Rightarrow b=20\)

Áp dụng định lý pitago ta có :

\(c^2=a^2+b^2=15^2+20^2=225+400=625=25^2\)

\(\Rightarrow c=25\left(m\right)\)

Vậy cạnh huyền của tam giác đó dà 25m .

24 tháng 2 2017

Gọi độ dài 2 cạnh góc vuông là a và b. Ta có: 3a=4b => a=\(\frac{4b}{3}\)(1)

và a.b=150.2=300 <=> \(\frac{4b}{3}.b=300\)=> b.b=225=15.15 => b=15 (cm). Thay vào (1) => a=\(\frac{4.15}{3}\)=20 (cm)

=> Độ dài cạnh huyền là: \(\sqrt{15^2+20^2}=\sqrt{225}\)=25 (cm)

11 tháng 3 2022

Mình làm thế này có ổn ko?

Gọi tam giác ABC vuông tại A cạnh huyền BC là 10cm và đường cao AH (H thuộc BC) là 6cm

Vậy ta có: \(HB+HC=10\)

Dùng hệ thức lượng trong tam giác vuông ta có: \(HB.HC=AH^2=36\)

Vậy ta có: \(\hept{\begin{cases}HB+HC=10=S\\HB.HC=36=P\end{cases}}\)\

Vì \(S^2-4P=10^2-4.36\)\(=100-144=-44< 0\)

Vậy không có HB, HC nào thỏa mãn hpt trên (trái với hệ thức lượng trong tam giác vuông)

Vậy không có tam giác vuông có cạnh huyền là 10cm và đường cao tương ứng với cạnh huyền là 6cm

11 tháng 3 2022

là S của hình đó ,dễ mà nhể

17 tháng 5 2023

Gọi cạnh góc vuông bé là \(x\)  ( cm) ; \(x\) > 0

Thì cạnh góc vuông lớn là \(x\times\) 3 = 3\(x\)

Diện tích của tam giác vuông khi đó là: 3\(x\) \(\times\) \(x\) = 3\(x^2\)

Theo bài ra ta có: 3\(x^2\) = 150 ⇒ \(x^2\) = 150 : 3 ⇒ \(x^2\) = 50 

Theo py ta go ta có:

Độ dài cạnh huyền là: \(\sqrt{x^2+\left(3x\right)^2}\) = \(\sqrt{10x^2}\) = \(\sqrt{10.50}\) = 10\(\sqrt{5}\)

Kết luận độ dài cạnh huyền là: 10\(\sqrt{5}\)(cm)

 

 

20 tháng 9 2017

câu 2

Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125 

Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*) 
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**) 
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0 
=> AB^2 = 5605. Vì AB > 0 => AB = 75 
AC = 4/3 x AC => AC = 100 

Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC. 
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có: 
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45 
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80

20 tháng 9 2017

(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5

23 tháng 2 2018

gọi độ dài 2 cạnh góc vuông lần lượt là a, b ( cm ), độ dài cạnh huyền là c(cm)     ( a,b,c > 0 ) Ta xét tam giác ABC vuông tại A

Đặt \(\frac{a}{7}\)=    \(\frac{b}{24}\)=   k  => a = 7k,       b = 24k

ta có \(\frac{ab}{2}\)=   336  => 7k * 24k = 672  =>  \(168k^2=672\)

=> \(k^2=4\)=> k = 2 => a = 2 * 7 = 14,  b = 2 * 24 = 48

Xét tam giác ABC vuông tại A theo định lý Py-ta-go ta có

\(a^2+b^2=c^2\)=>  \(c^2=14^2+48^2\)

=> \(c^2=2500\)=> c = 50 cm

vậy độ dài cạnh huyền là 50 cm

12 tháng 4 2020

185/9216 m2