Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi độ dài 2 cạnh góc vuông lần lượt là a,b
theo đề bài ta có a/7=b/24
đặt a/7 =b/24=k
=>a=k7 va b=k24
=>k7.k24:2=366
=> k2=61/14
=>
bạn ơi mình giải ra số số căn bậc liệu có đúng đề ko
Gọi b, c là độ dài các cạnh góc vuông,a là độ dai cạnh huyền (tính bằng cm). Ta có:
\(\dfrac{b}{7}=\dfrac{c}{24}=k\Rightarrow b=7k,c=24k\)
Theo định lí Py-ta-go:
a2 = b2 + c2 = (7k)2 + (24k)2 = 625k2 = (25k)2
nên a = 25k
Theo đề bài a + b + c = 112 (cm). Từ đó ta tính được k = 2. Vậy a = 50cm.
Gọi b, c là độ dài các cạnh góc vuông,a là độ dai cạnh huyền (tính bằng cm). Ta có:
b7=c24=k⇒b=7k,c=24kb7=c24=k⇒b=7k,c=24k
Theo định lí Py-ta-go:
a2 = b2 + c2 = (7k)2 + (24k)2 = 625k2 = (25k)2
nên a = 25k
Theo đề bài a + b + c = 112 (cm). Từ đó ta tính được k = 2. Vậy a = 50cm.
Gọi chiều dài 2 cạnh góc vuông là a;b (a;b > 0) ; chiều dài cạnh huyền là c (c>0)
Với a > b
Ta có \(\frac{a}{24}=\frac{b}{7}\)
Đặt \(\frac{a}{24}=\frac{b}{7}=k\left(k>0\right)\Rightarrow\hept{\begin{cases}a=24k\\b=7k\end{cases}}\)
Vì tam giác đó vuông nên
a2 + b2 = c2 (định lý Py-ta-go)
=> (24k)2 + (7k)2 = c2
=> 576k2 + 49k2 = c2
=> 625k2 = c2
=> (25k)2 = c2
=> \(\orbr{\begin{cases}25k=c\left(tm\right)\\25k=-c\left(\text{loại vì }25k>0\text{ mà }-c< 0\right)\end{cases}}\)
=> 25k = c
Lại có a + b + c = 112
=> 24k + 7k + 25k = 112
=> 56k = 112
=> k = 2
=> c = 50
Vậy độ dài cạnh huyền là 50 cm
Gọi 2 cạnh góc vuông và cạnh huyền của tam giác đó lần lượt là a;b;c
Theo đề bài ta có : \(S=\frac{ab}{2}=150m^2\Rightarrow ab=300\left(m\right)\)
Và \(\frac{a}{3}=\frac{b}{4}\) \(\Rightarrow\left(\frac{a}{3}\right)^2=\left(\frac{b}{4}\right)^2=\frac{ab}{3.4}=\frac{300}{12}=25=5^2\)
\(\Rightarrow\left(\frac{a}{3}\right)^2=5^2\Rightarrow\frac{a}{3}=5\Rightarrow a=15\)
\(\Rightarrow\left(\frac{b}{4}\right)^2=5^2\Rightarrow\frac{b}{4}=5\Rightarrow b=20\)
Áp dụng định lý pitago ta có :
\(c^2=a^2+b^2=15^2+20^2=225+400=625=25^2\)
\(\Rightarrow c=25\left(m\right)\)
Vậy cạnh huyền của tam giác đó dà 25m .
Gọi độ dài 2 cạnh góc vuông là a và b. Ta có: 3a=4b => a=\(\frac{4b}{3}\)(1)
và a.b=150.2=300 <=> \(\frac{4b}{3}.b=300\)=> b.b=225=15.15 => b=15 (cm). Thay vào (1) => a=\(\frac{4.15}{3}\)=20 (cm)
=> Độ dài cạnh huyền là: \(\sqrt{15^2+20^2}=\sqrt{225}\)=25 (cm)
Bài 3:
Gọi độ dài hai cạnh góc vuông lần lượt là a,b
Theo đề, ta có: a/8=b/15
Đặt a/8=b/15=k
=>a=8k; b=15k
Ta có: \(a^2+b^2=51^2\)
\(\Leftrightarrow289k^2=2601\)
=>k=3
=>a=24; b=45
Bài 6:
Xét ΔABC có \(10^2=8^2+6^2\)
nên ΔABC vuông tại A
Refer:
2,
Ta có:AH là đường cao ΔABC
⇒AH ⊥ BC tại H
⇒∠AHB=∠AHC=90°
⇒ΔAHB và ΔAHC là Δvuông H
Xét ΔAHB vuông H có:
AH² + HB²=AB²(Py)
⇔24² + HB²=25²
⇔ HB²=25² - 24²
⇔ HB²=49
⇒ HB=7(đvđd)
Chứng minh tương tự:HC=10(đvđd)
Ta có:BC=BH + CH=7 + 10=17(đvđd)
giả sử tam giác ABC vuông tại A(AC>AB)
ta có BC=102 cm
AC = (15.AB )/8
tam giác ABC vuông tại A(giả thiết)
=> AB2 + AC2 =BC2
(=) AB2 + 225/64 AB2 = 1022 = 10404
(=) 289 AB2 = 10404.64=665856
=> AB2 = 2304
=> AB = \(\sqrt{2304}=48\)
AC= 15/8 . 48 = 90 (cm)
#Học-tốt
gọi độ dài 2 cạnh góc vuông lần lượt là a, b ( cm ), độ dài cạnh huyền là c(cm) ( a,b,c > 0 ) Ta xét tam giác ABC vuông tại A
Đặt \(\frac{a}{7}\)= \(\frac{b}{24}\)= k => a = 7k, b = 24k
ta có \(\frac{ab}{2}\)= 336 => 7k * 24k = 672 => \(168k^2=672\)
=> \(k^2=4\)=> k = 2 => a = 2 * 7 = 14, b = 2 * 24 = 48
Xét tam giác ABC vuông tại A theo định lý Py-ta-go ta có
\(a^2+b^2=c^2\)=> \(c^2=14^2+48^2\)
=> \(c^2=2500\)=> c = 50 cm
vậy độ dài cạnh huyền là 50 cm