K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

Ta có:\(\dfrac{x-1}{79}=\dfrac{-28}{1-x}\)

\(\Rightarrow\left(x-1\right)\left(1-x\right)=-28.79\)

\(\Rightarrow\left(x-1\right).1-\left(x-1\right)x=-2212\)

\(\Rightarrow x-1-x^2+x=-2212\)

\(\Rightarrow x+x-x^2=-2211\)

\(\Rightarrow2x-x^2=-2211\)

\(\Rightarrow x\left(2-x\right)=-2211\)

...

12 tháng 7 2017

\(\dfrac{x-1}{79}=\dfrac{-28}{1-x}\)

\(\Leftrightarrow\left(x-1\right)\left(1-x\right)=\left(-28\right).79\)

\(\Leftrightarrow x\left(1-x\right)-1\left(1-x\right)=-2212\)

\(\Leftrightarrow x-x^2-1-x=-2212\)

\(\Leftrightarrow-x^2-1=-2212\)

\(\Leftrightarrow-x^2=-2211\)

\(\Leftrightarrow x^2=2211\)

\(\Leftrightarrow x=\sqrt{2211}\)

D
datcoder
CTVVIP
21 tháng 9 2023

a) \(\dfrac{2}{3}+\dfrac{3}{4}< x< 1\dfrac{1}{3}+\dfrac{4}{5}\)

\(\dfrac{2\times4}{3\times4}+\dfrac{3\times3}{4\times3}< x< \dfrac{\left(1\times3+1\right)\times5}{3\times5}+\dfrac{4\times3}{5\times3}\)

\(\dfrac{8}{12}+\dfrac{9}{12}< x< \dfrac{20}{15}+\dfrac{12}{15}\\ \dfrac{17}{12}< x< \dfrac{32}{15}\)

Ước tính: \(\dfrac{17}{12}=1,4\) và \(\dfrac{32}{15}=2,1\). Vậy số tự nhiên x = 2 sẽ thõa mãn 1,4 < x < 2,1

b)

 \(\dfrac{5}{6}-\dfrac{1}{4}< x< 2\dfrac{1}{3}-\dfrac{2}{5}\\ \dfrac{5\times4}{6\times4}-\dfrac{1\times6}{4\times6}< x< \dfrac{\left(2\times3+1\right)\times5}{3\times5}-\dfrac{2\times3}{5\times3}\\ \dfrac{20}{24}-\dfrac{6}{24}< x< \dfrac{35}{15}-\dfrac{6}{15}\\ \dfrac{14}{24}< x< \dfrac{29}{15}\)

Ước tính \(\dfrac{14}{24}=0,5\) và \(\dfrac{29}{15}=1,9\)

Vậy với x là số tự nhiên x = 1 sẽ thõa mãn 0,5 < x < 1,9

21 tháng 9 2023

1,4 là sao mik chưa học ,

16 tháng 7 2023

\(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\) + \(\dfrac{1}{36}\) +...+ \(\dfrac{2}{x\left(x+1\right)}\) = \(\dfrac{11}{40}\) (\(x\in\) N*)

\(\dfrac{1}{2}\).(\(\dfrac{1}{15}\)+\(\dfrac{1}{21}\)+\(\dfrac{1}{28}\)+\(\dfrac{1}{36}\)+.....+ \(\dfrac{2}{x\left(x+1\right)}\)) = \(\dfrac{11}{40}\) \(\times\) \(\dfrac{1}{2}\)

\(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)

\(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + \(\dfrac{1}{7.8}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)

\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+...+ \(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)

\(\dfrac{1}{5}\) - \(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)

         \(\dfrac{1}{x+1}\) = \(\dfrac{1}{5}\) - \(\dfrac{11}{80}\)

           \(\dfrac{1}{x+1}\) = \(\dfrac{1}{16}\)

            \(x\) + 1 = 16

            \(x\)       = 16 - 1

             \(x\)     = 15 

a: =>x-3=9

=>x=12

b: =>10-x=-26

=>x=36

c: =>x:4-1=2

=>x:4=3

=>x=12

d: =>x^2=4

=>x=2 hoặc x=-2

e: =>(x-2)^2=100

=>x-2=10 hoặc x-2=-10

=>x=12 hoặc x=-8

`#040911`

`a)`

`3 1/3 x + 16 3/4 = -13,25`

`=> 3 1/3 x = -13,25 - 16 3/4`

`=> 3 1/3 x = -30`

`=> x = -30 \div 3 1/3`

`=> x =-9`

Vậy, `x = -9`

`b)`

`3 2/7*x - 1/8 = 2 3/4`

`=> 3 2/7x = 2 3/4 + 1/8`

`=> 3 2/7x = 23/8`

`=> x = 23/8 \div 3 2/7`

`=> x = 7/8`

Vậy, `x = 7/8`

`c)`

`x \div 4 1/3 = -2,5`

`=> x = -2,5 * 4 1/3`

`=> x = -65/6`

Vậy, `x = -65/6`

`d)`

`( (3x)/7 + 1) \div (-4) = (-1)/28`

`=> (3x)/7 +1 = (-1)/28 * (-4)`

`=> (3x)/7 + 1 = 1/7`

`=> (3x)/7 = 1/7 - 1`

`=> (3x)/7 = -6/7`

`=> 3x = -6`

`=> x = -6 \div 3`

`=> x = -2`

Vậy, `x = -2.`

18 tháng 8 2023

a

=>10/3 . x + 16 + 3/4 = -13,25

=>10/3 x + 3/4 = -29,25

=>10/3 x = -30

=>x=-30 : 10/3

=>x=-30 . 3/10

=>x=-9

b.

=>23/7 x - 1/8 = = 11/4

=>23/7 x = 11/4 + 1/8

=>23/7 x= 22/8 + 1/8

=>23/7 x= 23/8

=>x=23/8 : 23/7

=>x=23/8 . 7/23

=>x=7/8

c.

=>x : 13/3 =-5/2

=>x=-5/2 . 13/3

=>x=-65/6

d.

=>3x/7 +1 = (-1/28) . (-4)

=>3x/7 + 1 = 1/7

=>3x/7 = -6/7

=>3x=-6

=>x=-2

24 tháng 12 2022

\(\left(\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}\right)-\left(\dfrac{79}{67}-\dfrac{28}{41}\right)\)
\(=\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}-\dfrac{79}{67}+\dfrac{28}{41}\)
\(=\dfrac{1}{3}+\left(\dfrac{12}{67}-\dfrac{79}{67}\right)+\left(\dfrac{13}{41}+\dfrac{28}{41}\right)\)
\(=\dfrac{1}{3}+\left(-1\right)+1=\dfrac{1}{3}+0=\dfrac{1}{3}\)
\(\left(\dfrac{15}{4}-5x\right).\left(9x^2-4\right)=0\)
\(\left[{}\begin{matrix}\dfrac{15}{4}-5x=0\\9x^2-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}5x=\dfrac{15}{4}\\9x^2=4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{2}{3}\end{matrix}\right.\)

6 tháng 8 2017

\(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\\ \dfrac{2}{42}+\dfrac{2}{56}+\dfrac{2}{72}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\\ 2\cdot\left[\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+...+\dfrac{1}{x\left(x+1\right)}\right]=\dfrac{2}{9}\\ \dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2}{9}:2\\ \dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1}{9}\\ \dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{4}{9}\\ \dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}\\ \dfrac{1}{x+1}=\dfrac{1}{18}\\ x+1=18\\ x=17\)

Vậy x = 17

15 tháng 3 2017

Ta có:

\(A=\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2}{9}\)

\(\Leftrightarrow A=\dfrac{1}{3.7}+\dfrac{1}{4.7}+\dfrac{1}{4.9}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2}{9}\)

\(\Leftrightarrow A=\dfrac{1.2}{2.3.7}+\dfrac{1.2}{2.4.7}+\dfrac{1.2}{2.4.9}+...+\dfrac{1.2}{x\left(x+1\right)}=\dfrac{2}{9}\)

\(\Leftrightarrow A=2\left(\dfrac{2}{6.7}+\dfrac{2}{7.8}+\dfrac{2}{8.9}+...+\dfrac{2}{x\left(x+1\right)}\right)=\dfrac{2}{9}\)

\(\Leftrightarrow A=2\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)

\(\Leftrightarrow A=2\left(\dfrac{1}{6}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)

\(\Leftrightarrow\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{1}{9}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{18}\)

\(\Leftrightarrow x+1=18\)

\(\Leftrightarrow x=17\)

Vậy \(x=17\)

a: Ta có: \(M=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}\)

\(=\dfrac{x^2}{x-1}\)

b: Để M>1 thì M-1>0

\(\Leftrightarrow\dfrac{x^2-x+1}{x-1}>0\)

\(\Leftrightarrow x-1>0\)

hay x>1

29 tháng 8 2021

a) ĐKXĐ: x # 0; x # 1; x# -1

M = (x^2)/(x-1)