K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2018

a) điều kiện xác định : \(x>0;x\ne1\)

ta có : \(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)

\(\Leftrightarrow A=\left(\dfrac{x}{2\sqrt{x}}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\right)\)

\(\Leftrightarrow A=\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(\Leftrightarrow A=\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{-4x}{x-1}\right)=-2\sqrt{x}\)

b) để \(A>-6\Leftrightarrow-2\sqrt{x}>-6\Leftrightarrow\sqrt{x}< 3\Leftrightarrow0< x< 9\)\(x\ne1\)

vậy ....

17 tháng 10 2018

Mysterious Person giúp mk

17 tháng 10 2018

Đk: x >0 ; x khác 1

sau khi rút gọn ra -2\(\sqrt{x}\)

b, 9>x>0

20 tháng 10 2022

a: ĐKXĐ: x>0; x<>1

\(A=\dfrac{x-1}{2\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)-\sqrt{x}\left(x+2\sqrt{x}+1\right)}{x-1}\)

\(=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1-x-2\sqrt{x}-1\right)}{2\sqrt{x}}=\dfrac{-4x}{2\sqrt{x}}=-2\sqrt{x}\)

b: Để A>-6 thì -2 căn x>-6

=>2 căn x<6

=>0<x<9

30 tháng 10 2018

a) điều kiện : \(x>0;x\ne9\)

ta có : \(A=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)

\(\Leftrightarrow A=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}-\dfrac{x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{1}{\sqrt{x}}\right)\)

\(\Leftrightarrow A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\) \(\Leftrightarrow A=\left(\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\right)\) \(\Leftrightarrow A=\dfrac{-3\sqrt{x}}{2\left(\sqrt{x}+2\right)}\) b) \(A< -1\) \(\Leftrightarrow A+1< 0\Leftrightarrow\dfrac{-3\sqrt{x}}{2\sqrt{x}+3}+1< 0\Leftrightarrow\dfrac{-\sqrt{x}+3}{2\sqrt{x}+3}< 0\)

\(\Leftrightarrow-\sqrt{x}+3< 0\Leftrightarrow\sqrt{x}>3\Leftrightarrow x>9\)

vậy ...

----------------------------(-_-)---------------------------------------------------

29 tháng 10 2018

Mysterious Person giup mk nha. Mk cảm ơn!

11 tháng 11 2018

A=\(\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\div\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

=\(\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x+3}\right)\left(\sqrt{x}-3\right)}\times\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)

=\(\dfrac{-3\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)

29 tháng 10 2018

Mysterious Person Dương Nguyễn Nguyễn Thanh HằngKhôi Bùi

Arakawa Whiter Tạ Thị Diễm Quỳnh giúp mk nhá. Thanks!

a: ĐKXĐ: x>=0; x<>1

b: \(P=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2}\)

c: Để P>0 thì \(\sqrt{x}-1< 0\)

=>0<x<1

10 tháng 9 2017

1. \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)

\(=\left(1+\sqrt{2}\right)^2-\sqrt{3}^2\)

\(=1+2\sqrt{2}+2-3\)

\(=2\sqrt{2}\)

10 tháng 9 2017

3. \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)(1)

ĐKXĐ \(x>0,x\ne1\)

pt (1) <=> \(\left(\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\right)\cdot\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}+1+\sqrt{x}-1\right)}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)

\(\Leftrightarrow\dfrac{\sqrt{x}\cdot2}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}\)

b) Để \(\sqrt{A}>A\Leftrightarrow\sqrt{\dfrac{2}{\sqrt{x}-1}}>\dfrac{2}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}>\dfrac{4}{x-2\sqrt{x}+1}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}-\dfrac{4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\cdot\left(\sqrt{x}-1\right)-4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\sqrt{2}-2-4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\sqrt{2}-6}{x-2\sqrt{x}+1}>0\)

\(2\sqrt{2}-6< 0\Rightarrow x-2\sqrt{x}+1< 0\)

\(x-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\ge0\forall x\)

Vậy không có giá trị nào của x thỏa mãn \(\sqrt{A}>A\)

(P/s Đề câu b bị sai hay sao vậy, chả có số nào mà \(\sqrt{A}>A\) cả, check lại đề giùm với nhé)

a: ĐKXĐ: x>=0; x<>1

\(B=\dfrac{\sqrt{x}\left(1-x\right)^2}{x+1}:\left[\left(x-2\sqrt{x}+1\right)\left(x+2\sqrt{x}+1\right)\right]\)

\(=\dfrac{\sqrt{x}\left(x-1\right)^2}{x+1}\cdot\dfrac{1}{\left(x-1\right)^2}=\dfrac{\sqrt{x}}{x+1}\)

b: Để B=2/5 thì \(\dfrac{\sqrt{x}}{x+1}=\dfrac{2}{5}\)

\(\Leftrightarrow2x-5\sqrt{x}+2=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

=>x=1/4 hoặc x=4

c: Thay \(x=12-6\sqrt{3}=\left(3-\sqrt{3}\right)^2\) vào A, ta được:

\(A=\dfrac{3-\sqrt{3}}{12-6\sqrt{3}+1}=\dfrac{3-\sqrt{3}}{13-6\sqrt{3}}=\dfrac{21+5\sqrt{3}}{61}\)

24 tháng 10 2018

a) ĐKXĐ: x ≥ 0; x ≠ 1

A = \(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)

= \(\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(x-1\right)^2}{2}\)

= \(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(x-1\right)^2}{2}\)

=\(\dfrac{x+\sqrt{x}-2\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)

= \(2\sqrt{x}.\dfrac{\sqrt{x}-1}{2}\)

= \(\sqrt{x}\left(\sqrt{x}-1\right)\)

b) Để A > 0 ⇔ \(\sqrt{x}\left(\sqrt{x}-1\right)\)> 0

\(\begin{cases} x > 0\\ \sqrt{x}-1>0 \end{cases}\) (vì \(\sqrt{x}\) ≥ 0)

\(x>1\)

Vậy A > 0 ⇔ x > 1

c) Có A = \(\sqrt{x}\left(\sqrt{x}-1\right)\) = \(x-\sqrt{x}\)

= \(x-2.\dfrac{1}{2}.\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}\)

= \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)

Thấy \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)\(-\dfrac{1}{4}\) ∀ x ≥ 0 Hay A ≥ \(-\dfrac{1}{4}\) ∀ x ≥ 0 và x ≠ 1

Dấu '' = '' xảy ra ⇔ \(\sqrt{x}-\dfrac{1}{2}=0\)\(x=\dfrac{1}{4}\) (thỏa mãn điều kiện)

GTNN của A là \(-\dfrac{1}{4}\) tại \(x=\dfrac{1}{4}\)

(Mình xin thay đổi đề bài phần c một chút nhé! Mình nghĩ với x càng lớn thì A sẽ càng lớn nên A không có giá trị lớn nhất)

Học toán vui vẻ! banhqua