Tìm GTNN của biểu thức: C =x2 -4xy +5y2 +10x -22y +28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có:
\(A=x^2-2x-1=x^2-2x+1-2=\left(x-1\right)^2-2\)
\(\ge0-2=-2\)
Vậy \(A_{min}=-2\), đạt được khi và chỉ khi \(x-1=0\Leftrightarrow x=1\)
b)\(B=4x^2+4x+8=4x^2+4x+1+7\)
\(=\left(2x+1\right)^2+7\ge0+7=7\)
Vậy \(B_{min}=7\), đạt được khi và chỉ khi \(2x+1=0\Leftrightarrow x=\dfrac{-1}{2}\)
c)
Ta có:
\(C=3x-x^2+2=2-\left(x^2-3x\right)\)
\(=2+\dfrac{9}{4}-\left(x^2-2x.\dfrac{3}{2}+\dfrac{9}{4}\right)\)
\(=\dfrac{17}{4}-\left(x-\dfrac{3}{2}\right)^2\le\dfrac{17}{4}-0=\dfrac{17}{4}\)
Vậy \(C_{max}=\dfrac{17}{4}\), đạt được khi và chỉ khi \(x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)
d) Ta có:
\(D=-x^2-5x=-\left(x^2+5x\right)=\dfrac{25}{4}-\left(x^2+2x.\dfrac{5}{2}+\dfrac{25}{4}\right)\)
\(=\dfrac{25}{4}-\left(x+\dfrac{5}{2}\right)^2\le\dfrac{25}{4}-0=\dfrac{25}{4}\)
Vậy \(D_{max}=\dfrac{25}{4}\), đạt được khi và chỉ khi \(x+\dfrac{5}{2}=0\Leftrightarrow x=-\dfrac{5}{2}\)
e) Ta có:
\(E=x^2-4xy+5y^2+10x-22y+28\)
\(=x^2+4y^2+5^2-4xy+10x-20y+y^2-2y+1+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
\(\ge0+0+2=2\)
Vậy \(E_{min}=2\), đạt được khi và chỉ khi \(x-2y+5=y-1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(C_{min}=2\) khi \(\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
\(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=3\\ B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\\ B_{min}=51\Leftrightarrow x=5\\ C=\left[\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\\ C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\\ C_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-5=2-5=-3\\y=1\end{matrix}\right.\)
a) \(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
\(minA=2\Leftrightarrow x=3\)
b) \(B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\)
\(minB=51\Leftrightarrow x=5\)
c) \(C=\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(minC=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
\(C=x^2-4xy+5y^2+10x-22y+28\)
\(=x^2-4xy+10x+4y^2+25-10y+y^2-2y+3\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Vậy \(GTNN=2\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
\(C=x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)
\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y-5\right)^2+\left(y-1\right)^2+2\ge2\)
Đẳng thức khó tìm quá huhu
C = x2 - 4xy + 5y2 + 10x - 22y + 28
= ( x2 - 4xy + 4y2) + ( 10x - 20y) + 25 + (y2 - 2y + 1) + 2
= ( x - 2y)2 + 10( x - 2y) + 25 + (y - 1)2 + 2
= (x - 2y + 5)2 + (y - 1)2 + 2 \(\ge\)2
Min C = 2 \(\Leftrightarrow\)\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
C = x2 - 4xy + 5y2 + 10x - 22y + 28
= ( x2 - 4xy + 4y2) + ( 10x - 20y) + 25 + (y2 - 2y + 1) + 2
= ( x - 2y)2 + 10( x - 2y) + 25 + (y - 1)2 + 2
= (x - 2y + 5)2 + (y - 1)2 + 2 ≥2
Min C = 2
x−2y+5=0 |
y−1=0 |
{ |
{ |
Thu gọn
C = x2 - 4xy + 5y2 + 10x - 22y + 28
= (x2 - 4xy + 4y2) + (10x - 20y) + (y2 - 2y) + 28
= (x - 2y)2 + 10(x - 2y) + 25 + (y2 - 2y + 1) + 2
= (x - 2y)2 + 2.(x - 2y).5 + 52 + (y - 1)2 + 2
= (x - 2y + 5)2 + (y - 1)2 + 2
Vì \(\left(x-2y+5\right)^2\ge0\forall x;y\); \(\left(y-1\right)^2\ge0\forall y\) nên \(\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x;y\)
hay \(C\ge2\forall x;y\)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-5\\y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
Vậy ...