K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 12 2023

Lời giải:

Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+....+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

\(7^2A=1-\frac{1}{7^2}+....+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n-2}}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)

\(\Rightarrow A+7^2A=1-\frac{1}{7^{100}}\Rightarrow 50A=1-\frac{1}{7^{100}}<1\)

$\Rightarrow A< \frac{1}{50}$

27 tháng 11 2017

Đặt \(A=\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}\)

Ta có:

\(\dfrac{A}{7^2}=\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}+\dfrac{1}{7^{102}}\)

\(\Rightarrow A+\dfrac{A}{7^2}=\left(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}\right)+\left(\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}+\dfrac{1}{7^{102}}\right)\)

\(\Rightarrow\dfrac{50A}{49}=\dfrac{1}{7^2}-\dfrac{1}{7^{102}}< \dfrac{1}{7^2}=\dfrac{1}{49}\)

\(\Rightarrow A< \dfrac{1}{50}\)

=> ĐPCM.

13 tháng 10 2019

\(\text{Đặt:}S=\frac{1}{7^2}-\frac{1}{7^4}+....-\frac{1}{7^{100}}\Rightarrow49S=1-\frac{1}{7^2}+.....-\frac{1}{7^{98}}\Rightarrow49S+S=50S=\left(1-\frac{1}{7^2}+\frac{1}{7^4}-....-\frac{1}{7^{98}}\right)+\left(\frac{1}{7^2}-\frac{1}{7^4}+....-\frac{1}{7^{100}}\right)=1-\frac{1}{7^{100}}< 1\Rightarrow S< \frac{1}{50}\left(\text{đpcm}\right)\)

13 tháng 10 2019

svtkvtm mơn bn nhìu nhìu

9 tháng 7 2017

a)

\(B=1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...........-\dfrac{1}{2004^2}\)

\(\Leftrightarrow B=1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+..............+\dfrac{1}{2004^2}\right)\)

Đặt :

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+.............+\dfrac{1}{2004^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

..........................

\(\dfrac{1}{2004^2}< \dfrac{1}{2003.2004}\)

\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+..............+\dfrac{1}{2003.2004}\)

\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{2003}-\dfrac{1}{2004}\)

\(\Leftrightarrow A< 1-\dfrac{1}{2004}\)

\(\Leftrightarrow A< \dfrac{2003}{2004}\)

\(\Leftrightarrow1-A< 1-\dfrac{2003}{2004}\)

\(\Leftrightarrow B< \dfrac{1}{2004}\left(đpcm\right)\)

b) \(S=\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-........+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+.......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)

\(\Leftrightarrow2^2S=2^2\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+.....+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+....+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)

\(\Leftrightarrow4S=1-\dfrac{1}{2^2}+.......+\dfrac{1}{2^{4n}}-\dfrac{1}{2^{4n+2}}+.......+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}\)

\(\Leftrightarrow4S+S=\left(1-\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}\right)+\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+.......+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)\(\Leftrightarrow5S=1-\dfrac{1}{2^{2004}}< 1\)

\(\Leftrightarrow S< \dfrac{1}{5}=0,2\)

\(\Leftrightarrow S< 0,2\left(đpcm\right)\)

19 tháng 2 2020

cho mik hỏi mik ko hiểu tại sao từ 1/2^4n-2 khi nhân với 2^2 lại ra đc 1/2^4n vậy? Xin hãy giải đáp giùm mik

7 tháng 5 2017

lầy dạ??

14 tháng 11 2023

2:

\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)

\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)

 

5 tháng 5 2021

Dễ quá